We formulate a version of the T1 theorem which enables us to treat singular integrals whose kernels need not satisfy the usual smoothness conditions. We also prove a weighted version. As an application of the general theory, we consider a class of multilinear singular integrals in related to the first Calderón commutator, but with a kernel which is far less regular.
@article{bwmeta1.element.bwnjournal-article-smv109i2p105bwm, author = {Steve Hofmann}, title = {On certain nonstandard Calder\'on-Zygmund operators}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {105-131}, zbl = {0826.42012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i2p105bwm} }
Hofmann, Steve. On certain nonstandard Calderón-Zygmund operators. Studia Mathematica, Tome 108 (1994) pp. 105-131. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i2p105bwm/
[00000] [BC] B. Bajsanski and R. Coifman, On singular integrals, in: Proc. Sympos. Pure Math. 10, Amer. Math. Soc., Providence, 1967, 1-17.
[00001] [Ca] A. P. Calderón, Commutators of singular integrals, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099. | Zbl 0151.16901
[00002] [CZ] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289-309. | Zbl 0072.11501
[00003] [CC] C. P. Calderón, On commutators of singular integrals, Studia Math. 53 (1975), 139-174. | Zbl 0315.44006
[00004] [CS] A. Carbery and A. Seeger, Conditionally convergent series of linear operators on -spaces and -estimates for pseudodifferential operators, Proc. London Math. Soc. 57 (1988), 481-510. | Zbl 0681.35091
[00005] [C] M. Christ, Weak type (1,1) bounds for rough operators, Ann. of Math. 128 (1988), 19-42. | Zbl 0666.47027
[00006] [C2] M. Christ, Hilbert transforms along curves I. Nilpotent groups, ibid. 122 (1985), 575-596. | Zbl 0593.43011
[00007] [Co] J. Cohen, A sharp estimate for a multilinear singular integral in , Indiana Univ. Math. J. 30 (1981), 693-702. | Zbl 0596.42004
[00008] [CDMS] R. Coifman, G. David, Y. Meyer and S. Semmes, ω-Calderón-Zygmund operators, in: Proc. Conf. Harmonic Analysis and PDE, El Escorial 1987, Lecture Notes in Math. 1384, Springer, Berlin, 1989, 132-145.
[00009] [CRW] R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. | Zbl 0326.32011
[00010] [DJ] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, ibid. 120 (1984), 371-397. | Zbl 0567.47025
[00011] [DJS] G. David, J.-L. Journé and S. Semmes, Calderón-Zygmund operators, para-accretive functions and interpolation, preprint. | Zbl 0604.42014
[00012] [DR] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541-561. | Zbl 0568.42012
[00013] [GR] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985.
[00014] [HH] Y. S. Han and S. Hofmann, T1 theorems for Besov and Triebel-Lizorkin spaces, Trans. Amer. Math. Soc., to appear. | Zbl 0779.42010
[00015] [HS] Y. S. Han and E. T. Sawyer, Para-accretive functions, the weak boundedness property, and interpolation, Rev. Mat. Iberoamericana, to appear.
[00016] [H] S. Hofmann, Weighted inequalities for commutators of rough singular integrals, Indiana Univ. Math. J. 39 (1990), 1275-1304. | Zbl 0708.42012
[00017] [H2] S. Hofmann, Singular integrals of Calderón-type in , and BMO, Rev. Mat. Iberoamericana, to appear.
[00018] [Hu] Y. Hu, An estimate for multilinear singular integrals on , Beijing Daxue Xuebao 1985 (3), 19-26 (in Chinese, with English summary reprinted in MR 87h:42026).
[00019] [J] J.-L. Journé, Calderón-Zygmund Operators, Pseudo-Differential Operators, and the Cauchy Integral of Calderón, Lecture Notes in Math. 994, Springer, Berlin, 1983. | Zbl 0508.42021
[00020] [M] Y. Meyer, La continuité des opérateurs définis par des intégrales singulières, Monografías de Matemáticas V. 4, Univ. Autónoma de Madrid. | Zbl 0547.47032
[00021] [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501