Let A and B be two unitary Banach algebras. We study linear mappings from A into B which preserve the polynomially convex hull of the spectrum. In particular, we give conditions under which such surjective linear mappings are Jordan morphisms.
@article{bwmeta1.element.bwnjournal-article-smv109i1p91bwm, author = {B. Aupetit and H. du T. Mouton}, title = {Spectrum preserving linear mappings in Banach algebras}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {91-100}, zbl = {0829.46039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i1p91bwm} }
Aupetit, B.; du T. Mouton, H. Spectrum preserving linear mappings in Banach algebras. Studia Mathematica, Tome 108 (1994) pp. 91-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i1p91bwm/
[00000] [1] B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, Berlin, 1979. | Zbl 0409.46054
[00001] [2] B. Aupetit, A Primer on Spectral Theory, Springer, Berlin, 1991.
[00002] [3] I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1969. | Zbl 0232.16001
[00003] [4] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. | Zbl 0589.47003
[00004] [5] I. Kaplansky, Algebraic and Analytic Aspects of Operator Algebras, CBMS Regional Conf. Ser. in Math. 1, Amer. Math. Soc., Providence, 1970.
[00005] [6] M. Marcus and R. Purves, Linear transformations on algebras of matrices: the invariance of the elementary symmetric functions, Canad. J. Math. 11 (1959), 383-396. | Zbl 0086.01704
[00006] [7] T. Mouton (H. du) and H. Raubenheimer, On rank one and finite elements of Banach algebras, Studia Math. 104 (1993), 211-219.
[00007] [8] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.