We classify weights which map reverse Hölder weight spaces to other reverse Hölder weight spaces under pointwise multiplication. We also give some fairly general examples of weights satisfying weak reverse Hölder conditions.
@article{bwmeta1.element.bwnjournal-article-smv109i1p23bwm, author = {Stephen Buckley}, title = {Pointwise multipliers for reverse Holder spaces}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {23-39}, zbl = {0844.42008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i1p23bwm} }
Buckley, Stephen. Pointwise multipliers for reverse Holder spaces. Studia Mathematica, Tome 108 (1994) pp. 23-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i1p23bwm/
[00000] [B-I] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in , Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1984), 257-324. | Zbl 0548.30016
[00001] [C-F] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. | Zbl 0291.44007
[00002] [G-R] J. García-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985.
[00003] [G] F. Gehring, The integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265-277. | Zbl 0258.30021
[00004] [I-N] T. Iwaniec and C. Nolder, Hardy-Littlewood inequality for quasiregular mappings in certain domains in ℝ, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 267-282. | Zbl 0588.30023
[00005] [J-N] R. Johnson and C. Neugebauer, Homeomorphisms preserving , Rev. Mat. Iberoamericana 3 (1987), 249-273.
[00006] [Mo] J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. | Zbl 0111.09302
[00007] [Mu] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016
[00008] [Sa] E. Sawyer, Norm inequalities relating singular integrals and the maximal function, Studia Math. 75 (1983), 253-263. | Zbl 0528.44002
[00009] [Sta] S. Staples, Maximal functions, -measures, and quasiconformal maps, Proc. Amer. Math. Soc. 113 (1991), 689-700. | Zbl 0817.30006
[00010] [Ste] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
[00011] [Str] E. Stredulinsky, Weighted Inequalities and Degenerate Elliptic Partial Differential Equations, Springer, 1984.