We prove that if is the Rademacher system of functions then for any sequence of vectors in any normed linear space F.
@article{bwmeta1.element.bwnjournal-article-smv109i1p101bwm, author = {Rafa\l\ Lata\l a and Krzysztof Oleszkiewicz}, title = {On the best constant in the Khinchin-Kahane inequality}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {101-104}, zbl = {0812.60010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv109i1p101bwm} }
Latała, Rafał; Oleszkiewicz, Krzysztof. On the best constant in the Khinchin-Kahane inequality. Studia Mathematica, Tome 108 (1994) pp. 101-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv109i1p101bwm/
[00000] [1] U. Haagerup, The best constants in the Khintchine inequality, Studia Math. 70 (1982), 231-283. | Zbl 0501.46015
[00001] [2] J.-P. Kahane, Sur les sommes vectorielles , C. R. Acad. Sci. Paris 259 (1964), 2577-2580.
[00002] [3] A. Khintchine [A. Khinchin], Über dyadische Brüche, Math. Z. 18 (1923), 109-116.
[00003] [4] S. J. Szarek, On the best constants in the Khinchin inequality, Studia Math. 58 (1976), 197-208. | Zbl 0424.42014
[00004] [5] B. Tomaszewski, Two remarks on the Khintchin-Kahane inequality, Colloq. Math. 46 (1982), 283-288. | Zbl 0501.46021
[00005] [6] B. Tomaszewski, A simple and elementary proof of the Khintchine inequality with the best constant, Bull. Sci. Math. (2) 111 (1987), 103-109. | Zbl 0623.42015