Triebel-Lizorkin spaces on spaces of homogeneous type
Han, Y.-S.
Studia Mathematica, Tome 108 (1994), p. 247-273 / Harvested from The Polish Digital Mathematics Library

In [HS] the Besov and Triebel-Lizorkin spaces on spaces of homogeneous type were introduced. In this paper, the Triebel-Lizorkin spaces on spaces of homogeneous type are generalized to the case where p0<p1q<, and a new atomic decomposition for these spaces is obtained. As a consequence, we give the Littlewood-Paley characterization of Hardy spaces on spaces of homogeneous type which were introduced by the maximal function characterization in [MS2].

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216053
@article{bwmeta1.element.bwnjournal-article-smv108i3p247bwm,
     author = {Y.-S. Han},
     title = {Triebel-Lizorkin spaces on spaces of homogeneous type},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {247-273},
     zbl = {0822.46033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv108i3p247bwm}
}
Han, Y.-S. Triebel-Lizorkin spaces on spaces of homogeneous type. Studia Mathematica, Tome 108 (1994) pp. 247-273. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv108i3p247bwm/

[00000] [CF] S.-Y. A. Chang and R. Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math. 104 (1982), 445-468. | Zbl 0513.42019

[00001] [Ch] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601-628. | Zbl 0758.42009

[00002] [CW1] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.

[00003] [CW2] R. Coifman et G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023

[00004] [DJS] G. David, J.-L. Journé et S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56. | Zbl 0604.42014

[00005] [FJ] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. | Zbl 0716.46031

[00006] [H1] Y.-S. Han, On the Hardy-type spaces, Chinese Quart. J. Math. 1 (1986), 42-64.

[00007] [H2] Y.-S. Han, The Calderón reproducing formula and the Tb theorem, Rev. Mat. Iberoamericana, to appear.

[00008] [HS] Y.-S. Han and E. T. Sawyer, Littlewood-Paley theory on spaces of homogeneous type and classical function spaces, Mem. Amer. Math. Soc., to appear.

[00009] [M] Y. Meyer, Les nouveaux opérateurs de Calderón-Zygmund, Astérisque 131 (1985), 237-254. | Zbl 0573.42010

[00010] [MS1] R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), 257-270. | Zbl 0431.46018

[00011] [MS2] R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, ibid., 271-309.

[00012] [TW] M. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149. | Zbl 0472.46041