We prove that if as max(|j|,|k|) → ∞, and , then f(x,y)ϕ(x)ψ(y) ∈ L¹(T²) and as min(m,n) → ∞, where f(x,y) is the limiting function of the rectangular partial sums , (ϕ,θ) and (ψ,ϑ) are pairs of type I. A generalization of this result concerning L¹-convergence is also established. Extensions of these results to double series of orthogonal functions are also considered. These results can be extended to n-dimensional case. The aforementioned results generalize work of Balashov [1], Boas [2], Chen [3,4,5], Marzuq [9], Móricz [11], Móricz-Schipp-Wade [14], and Young [16].
@article{bwmeta1.element.bwnjournal-article-smv108i2p177bwm, author = {Chang-Pao Chen}, title = {Weighted integrability and L$^1$-convergence of multiple trigonometric series}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {177-190}, zbl = {0821.42007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv108i2p177bwm} }
Chen, Chang-Pao. Weighted integrability and L¹-convergence of multiple trigonometric series. Studia Mathematica, Tome 108 (1994) pp. 177-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv108i2p177bwm/
[00000] [1] L. A. Balashov, Series with respect to the Walsh system with monotone coefficients, Sibirsk. Mat. Zh. 12 (1971), 25-39 (in Russian). | Zbl 0224.42010
[00001] [2] R. P. Boas, Integrability Theorems for Trigonometric Transforms, Springer, Berlin, 1967. | Zbl 0145.06804
[00002] [3] C.-P. Chen, L¹-convergence of Fourier series, J. Austral. Math. Soc. Ser. A 41 (1986), 376-390. | Zbl 0642.42005
[00003] [4] C.-P. Chen, Integrability and L¹-convergence of multiple trigonometric series, preprint. | Zbl 0795.42007
[00004] [5] C.-P. Chen, L¹-convergence of multiple Fourier series, submitted.
[00005] [6] C.-P. Chen and P.-H. Hsieh, Pointwise convergence of double trigonometric series, J. Math. Anal. Appl. 172 (1993), 582-599. | Zbl 0779.42004
[00006] [7] C.-P. Chen, F. Móricz and H.-C. Wu, Pointwise convergence of multiple trigonometric series, ibid., to appear.
[00007] [8] N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414. | Zbl 0036.03604
[00008] [9] M. M. H. Marzuq, Integrability theorem of multiple trigonometric series, J. Math. Anal. Appl. 157 (1991), 337-345. | Zbl 0729.42012
[00009] [10] F. Móricz, Convergence and integrability of double trigonometric series with coefficients of bounded variation, Proc. Amer. Math. Soc. 102 (1988), 633-640. | Zbl 0666.42004
[00010] [11] F. Móricz, On the integrability and L¹-convergence of double trigonometric series, Studia Math. 98 (1991), 203-225. | Zbl 0724.42015
[00011] [12] F. Móricz, Double Walsh series with coefficients of bounded variation, Z. Anal. Anwendungen 10 (1991), 3-10. | Zbl 0748.42010
[00012] [13] F. Móricz and F. Schipp, On the integrability and L¹-convergence of double Walsh series, Acta Math. Hungar. 57 (1991), 371-380. | Zbl 0746.42016
[00013] [14] F. Móricz, F. Schipp and W. R. Wade, On the integrability of double Walsh series with special coefficients, Michigan Math. J. 37 (1990), 191-201. | Zbl 0714.42017
[00014] [15] F. Schipp, W. R. Wade and P. Simon, Walsh Series, An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, Budapest, 1990. | Zbl 0727.42017
[00015] [16] W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. 12 (1913), 41-70. | Zbl 44.0300.03
[00016] [17] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, 1959. | Zbl 0085.05601