Ondelettes et poids de Muckenhoupt
Lemarié-Rieusset, Pierre
Studia Mathematica, Tome 108 (1994), p. 127-147 / Harvested from The Polish Digital Mathematics Library

We study, for a basis of Hölderian compactly supported wavelets, the boundedness and convergence of the associated projectors Pj on the space Lp(dμ) for some p in ]1,∞[ and some nonnegative Borel measure μ on ℝ. We show that the convergence properties are related to the Ap criterion of Muckenhoupt.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216045
@article{bwmeta1.element.bwnjournal-article-smv108i2p127bwm,
     author = {Pierre Lemari\'e-Rieusset},
     title = {Ondelettes et poids de Muckenhoupt},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {127-147},
     zbl = {0829.42022},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv108i2p127bwm}
}
Lemarié-Rieusset, Pierre. Ondelettes et poids de Muckenhoupt. Studia Mathematica, Tome 108 (1994) pp. 127-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv108i2p127bwm/

[00000] [1] I. Daubechies, Orthonormal basis of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. | Zbl 0644.42026

[00001] [2] P. G. Lemarié, Fonctions à support compact dans les analyses multi-résolutions, Rev. Mat. Iberoamericana 7 (1991), 157-182. | Zbl 0753.42014

[00002] [3] P. G. Lemarié et G. Malgouyres, Support des fonctions de base dans une analyse multi-résolution, C. R. Acad. Sci. Paris 313 (1991), 377-380. | Zbl 0759.42019

[00003] [4] G. Malgouyres, Analyse multi-résolution sur l'intervalle: algorithmes rapides, preprint, Univ. Paris-XI, 1991.

[00004] [5] S. Mallat, Multiresolution approximation and wavelet bases of L²(ℝ), Trans. Amer. Math. Soc. 315 (1989), 69-87.

[00005] [6] Y. Meyer, Ondelettes et opérateurs, tome I, Hermann, Paris, 1990. | Zbl 0694.41037

[00006] [7] Y. Meyer, Ondelettes et opérateurs, tome II, Hermann, Paris, 1991.