We study, for a basis of Hölderian compactly supported wavelets, the boundedness and convergence of the associated projectors on the space for some p in ]1,∞[ and some nonnegative Borel measure μ on ℝ. We show that the convergence properties are related to the criterion of Muckenhoupt.
@article{bwmeta1.element.bwnjournal-article-smv108i2p127bwm, author = {Pierre Lemari\'e-Rieusset}, title = {Ondelettes et poids de Muckenhoupt}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {127-147}, zbl = {0829.42022}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv108i2p127bwm} }
Lemarié-Rieusset, Pierre. Ondelettes et poids de Muckenhoupt. Studia Mathematica, Tome 108 (1994) pp. 127-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv108i2p127bwm/
[00000] [1] I. Daubechies, Orthonormal basis of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. | Zbl 0644.42026
[00001] [2] P. G. Lemarié, Fonctions à support compact dans les analyses multi-résolutions, Rev. Mat. Iberoamericana 7 (1991), 157-182. | Zbl 0753.42014
[00002] [3] P. G. Lemarié et G. Malgouyres, Support des fonctions de base dans une analyse multi-résolution, C. R. Acad. Sci. Paris 313 (1991), 377-380. | Zbl 0759.42019
[00003] [4] G. Malgouyres, Analyse multi-résolution sur l'intervalle: algorithmes rapides, preprint, Univ. Paris-XI, 1991.
[00004] [5] S. Mallat, Multiresolution approximation and wavelet bases of L²(ℝ), Trans. Amer. Math. Soc. 315 (1989), 69-87.
[00005] [6] Y. Meyer, Ondelettes et opérateurs, tome I, Hermann, Paris, 1990. | Zbl 0694.41037
[00006] [7] Y. Meyer, Ondelettes et opérateurs, tome II, Hermann, Paris, 1991.