Let X be a rearrangement-invariant space of Lebesgue-measurable functions on , such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on , define . We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at by ; more precisely, when for all F,G ∈ X(w).
@article{bwmeta1.element.bwnjournal-article-smv108i2p103bwm, author = {R. Kerman and E. Sawyer}, title = {Convolution algebras with weighted rearrangement-invariant norm}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {103-126}, zbl = {0838.46020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv108i2p103bwm} }
Kerman, R.; Sawyer, E. Convolution algebras with weighted rearrangement-invariant norm. Studia Mathematica, Tome 108 (1994) pp. 103-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv108i2p103bwm/
[00000] [1] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. | Zbl 0647.46057
[00001] [2] A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle, Neuvième Congrès Math. Scand., Helsingfors, 1938, 345-366. | Zbl 65.0483.02
[00002] [3] D. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canad. J. Math. 19 (1967), 599-616. | Zbl 0147.11302
[00003] [4] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. | Zbl 0204.13703
[00004] [5] M. Cwikel and P. Nilsson, Interpolation of weighted Banach lattices, Mem. Amer. Math. Soc., to appear. | Zbl 0548.46058
[00005] [6] T. A. Gillespie, Factorization in Banach function spaces, Nederl. Akad. Wetensch. Proc. Ser. A 84 (1981), 287-300. | Zbl 0475.46028
[00006] [7] S. Grabiner, Weighted convolution algebras on the half line, J. Math. Anal. Appl. 83 (1981), 531-583. | Zbl 0489.46023
[00007] [8] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, II, Springer, Berlin, 1963. | Zbl 0115.10603
[00008] [9] R. Howard and A. Schep, Norms of positive operators on -spaces, Proc. Amer. Math. Soc. 109 (1990), 135-146. | Zbl 0721.47012
[00009] [10] E. Kerlin and A. Lambert, Strictly cyclic shifts on , Acta Sci. Math. (Szeged) 35 (1973), 87-94. | Zbl 0266.47021
[00010] [11] G. Ya. Lozanovskiĭ, On some Banach lattices, Sibirsk. Mat. Zh. 10 (1969), 419-431 (in Russian). | Zbl 0194.43302
[00011] [12] N. K. Nikol'skiĭ, Invariant subspaces of the shift operator in some sequence spaces, Candidate's Dissertation, Leningrad, 1966 (in Russian).
[00012] [13] F. Riesz, Sur une inégalité intégrale, J. London Math. Soc. 5 (1930), 162-168.
[00013] [14] S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. 46 (1938), 471-497 (in Russian).