Applying methods of harmonic analysis we give a simple proof of the multidimensional version of the Rokhlin-Sinaǐ theorem which states that a Kolmogorov -action on a Lebesgue space has a countable Lebesgue spectrum. At the same time we extend this theorem to -actions. Next, using its relative version, we extend to -actions some other general results connecting spectrum and entropy.
@article{bwmeta1.element.bwnjournal-article-smv108i1p77bwm, author = {B. Kami\'nski and P. Liardet}, title = {Spectrum of multidimensional dynamical systems with positive entropy}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {77-85}, zbl = {0824.28011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv108i1p77bwm} }
Kamiński, B.; Liardet, P. Spectrum of multidimensional dynamical systems with positive entropy. Studia Mathematica, Tome 108 (1994) pp. 77-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv108i1p77bwm/
[00000] [G] F. P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand Math. Stud. 16, 1969. | Zbl 0174.19001
[00001] [H] H. Helson, Lectures on Invariant Subspaces, Academic Press, 1964. | Zbl 0119.11303
[00002] [HR] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer, 1963.
[00003] [Ka] B. Kamiński, The theory of invariant partitions for -actions, Bull. Polish Acad. Sci. Math. 29 (1981), 349-362.
[00004] [Ki1] J. C. Kieffer, A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space, Ann. Probab. 3 (1975), 1031-1037. | Zbl 0322.60032
[00005] [Ki2] J. C. Kieffer, The isomorphism theorem for generalized Bernoulli schemes, in: Studies in Probability and Ergodic Theory, Adv. in Math. Suppl. Stud. 2, Academic Press, 1978, 251-267.
[00006] [Kir] A. A. Kirillov, Dynamical systems, factors and representations of groups, Uspekhi Mat. Nauk 22 (5) (1967), 67-80 (in Russian).
[00007] [MN] V. Mandrekar and M. Nadkarni, Quasi-invariance of analytic measures on compact groups, Bull. Amer. Math. Soc. 73 (1967), 915-920. | Zbl 0193.10601
[00008] [Pa] W. Parry, Topics in Ergodic Theory, Cambridge University Press, 1981. | Zbl 0449.28016
[00009] [Pi] B. S. Pitskel', On informational futures of amenable groups, Dokl. Akad. Nauk SSSR 223 (1975), 1067-1070 (in Russian).
[00010] [RS] V. A. Rokhlin and Ya. G. Sinaǐ, Construction and properties of invariant measurable partitions, ibid. 141 (1961), 1038-1041 (in Russian).
[00011] [Ro] A. Rosenthal, Uniform generators for ergodic finite entropy free actions of amenable groups, Probab. Theory Related Fields 77 (1988), 147-166. | Zbl 0614.28017
[00012] [Ru] W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962. | Zbl 0107.09603
[00013] [T] J. P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli, Israel J. Math. 21 (1975), 177-207. | Zbl 0329.28008