The following results concerning boundary behavior of subharmonic functions in the unit ball of are generalized to nontangential accessible domains in the sense of Jerison and Kenig [7]: (i) The classical theorem of Littlewood on the radial limits. (ii) Ziomek’s theorem on the -nontangential limits. (iii) The localized version of the above two results and nontangential limits of Green potentials under a certain nontangential condition.
@article{bwmeta1.element.bwnjournal-article-smv108i1p25bwm, author = {Shiying Zhao}, title = {Boundary behavior of subharmonic functions in nontangential accessible domains}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {25-48}, zbl = {0863.31008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv108i1p25bwm} }
Zhao, Shiying. Boundary behavior of subharmonic functions in nontangential accessible domains. Studia Mathematica, Tome 108 (1994) pp. 25-48. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv108i1p25bwm/
[00000] [1] L. Carleson, On the existence of boundary values for harmonic functions in several variables, Ark. Mat. 4 (1962), 393-399. | Zbl 0107.08402
[00001] [2] B. E. J. Dahlberg, On estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 272-288. | Zbl 0406.28009
[00002] [3] B. E. J. Dahlberg, On the existence of radial boundary values for functions subharmonic in a Lipschitz domain, Indiana Univ. Math. J. 27 (1978), 515-526. | Zbl 0402.31011
[00003] [4] J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Springer, New York, 1984.
[00004] [5] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969. | Zbl 0176.00801
[00005] [6] L. L. Helms, Introduction of Potential Theory, Wiley-Interscience, New York, 1969. | Zbl 0188.17203
[00006] [7] D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. in Math. 46 (1982), 80-147. | Zbl 0514.31003
[00007] [8] D. S. Jerison and C. E. Kenig, Hardy spaces, , and singular integrals on chord-arc domains, Math. Scand. 50 (1982), 221-247. | Zbl 0509.30025
[00008] [9] J. E. Littlewood, On functions subharmonic in a circle (II), Proc. London Math. Soc. (2) 28 (1928), 383-394. | Zbl 54.0516.04
[00009] [10] L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier (Grenoble) 7 (1957), 183-281.
[00010] [11] E. M. Stein, On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math. 106 (1961), 137-174. | Zbl 0111.08001
[00011] [12] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501
[00012] [13] J. C. Taylor, Fine and nontangential convergence on an NTA domain, Proc. Amer. Math. Soc. 91 (1984), 237-244. | Zbl 0542.31004
[00013] [14] D. Ullrich, Radial limits of M-subharmonic functions, Trans. Amer. Math. Soc. 292 (1985), 501-518. | Zbl 0609.31003
[00014] [15] K.-O. Widman, On the boundary behavior of solutions to a class of elliptic partial differential equations, Ark. Mat. 6 (1967), 485-533. | Zbl 0166.37702
[00015] [16] R. Wittmann, Positive harmonic functions on nontangentially accessible domains, Math. Z. 190 (1985), 419-438. | Zbl 0555.31006
[00016] [17] J.-M. Wu, -densities and boundary behavior of Green potentials, Indiana Univ. Math. J. 28 (1979), 895-911. | Zbl 0449.31003
[00017] [18] L. Ziomek, On the boundary behavior in the metric of subharmonic functions, Studia Math. 29 (1967), 97-105. | Zbl 0157.42604