Certain lacunary cosine series are recurrent
Grubb, D. ; Moore, Charles
Studia Mathematica, Tome 108 (1994), p. 21-23 / Harvested from The Polish Digital Mathematics Library

Let the coefficients of a lacunary cosine series be bounded and not square-summable. Then the partial sums of the series are recurrent.

Publié le : 1994-01-01
EUDML-ID : urn:eudml:doc:216037
@article{bwmeta1.element.bwnjournal-article-smv108i1p21bwm,
     author = {D. Grubb and Charles Moore},
     title = {Certain lacunary cosine series are recurrent},
     journal = {Studia Mathematica},
     volume = {108},
     year = {1994},
     pages = {21-23},
     zbl = {0922.42003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv108i1p21bwm}
}
Grubb, D.; Moore, Charles. Certain lacunary cosine series are recurrent. Studia Mathematica, Tome 108 (1994) pp. 21-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv108i1p21bwm/

[00000] [1] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series. I. General results, J. Reine Angew. Math. 377 (1987), 65-82. | Zbl 0603.30004

[00001] [2] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series, II. The series 1nexp(ianθ), ibid., 83-96.

[00002] [3] D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 21 (1989), 1-35. | Zbl 0695.30001

[00003] [4] T. Murai, Gap series, in: Analytic Function Theory of One Complex Variable, Y. Komatu, K. Niino and C. Yang (eds.), Pitman Res. Notes in Math. 212, Longman Scientific & Technical, New York, 1989, 149-177.

[00004] [5] D. Ullrich, Recurrence for lacunary cosine series, preprint.

[00005] [6] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959. | Zbl 0085.05601