Let the coefficients of a lacunary cosine series be bounded and not square-summable. Then the partial sums of the series are recurrent.
@article{bwmeta1.element.bwnjournal-article-smv108i1p21bwm, author = {D. Grubb and Charles Moore}, title = {Certain lacunary cosine series are recurrent}, journal = {Studia Mathematica}, volume = {108}, year = {1994}, pages = {21-23}, zbl = {0922.42003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv108i1p21bwm} }
Grubb, D.; Moore, Charles. Certain lacunary cosine series are recurrent. Studia Mathematica, Tome 108 (1994) pp. 21-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv108i1p21bwm/
[00000] [1] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series. I. General results, J. Reine Angew. Math. 377 (1987), 65-82. | Zbl 0603.30004
[00001] [2] J. M. Anderson and L. D. Pitt, On recurrence properties of certain lacunary series, II. The series , ibid., 83-96.
[00002] [3] D. A. Brannan and W. K. Hayman, Research problems in complex analysis, Bull. London Math. Soc. 21 (1989), 1-35. | Zbl 0695.30001
[00003] [4] T. Murai, Gap series, in: Analytic Function Theory of One Complex Variable, Y. Komatu, K. Niino and C. Yang (eds.), Pitman Res. Notes in Math. 212, Longman Scientific & Technical, New York, 1989, 149-177.
[00004] [5] D. Ullrich, Recurrence for lacunary cosine series, preprint.
[00005] [6] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, 1959. | Zbl 0085.05601