Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces
Boyd, Christopher
Studia Mathematica, Tome 104 (1993), p. 305-315 / Harvested from The Polish Digital Mathematics Library

For U open in a locally convex space E it is shown in [31] that there is a complete locally convex space G(U) such that G(U)i'=((U),τδ). Here, we assume U is balanced open in a Fréchet space and give necessary and sufficient conditions for G(U) to be Montel and reflexive. These results give an insight into the relationship between the τ0 and τω topologies on ℋ (U).

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216035
@article{bwmeta1.element.bwnjournal-article-smv107i3p305bwm,
     author = {Christopher Boyd},
     title = {Montel and reflexive preduals of spaces of holomorphic functions on Fr\'echet spaces},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {305-315},
     zbl = {0811.46029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv107i3p305bwm}
}
Boyd, Christopher. Montel and reflexive preduals of spaces of holomorphic functions on Fréchet spaces. Studia Mathematica, Tome 104 (1993) pp. 305-315. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv107i3p305bwm/

[00000] [1] R. Alencar, R. Aron and S. Dineen, A reflexive space of holomorphic functions in infinitely many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411. | Zbl 0536.46015

[00001] [2] J. M. Ansemil and S. Ponte, Topologies associated with the compact open topology on ℋ(U), Proc. Roy. Irish Acad. 82A (1982), 121-128.

[00002] [3] J. M. Ansemil and S. Ponte, The barrelled topology associated with the compact-open topology on ℋ (U) and ℋ (K), Portugal. Math. 43 (1985-1986), 429-438. | Zbl 0611.46032

[00003] [4] J. M. Ansemil and S. Ponte, The compact open topology and the Nachbin ported topologies on spaces of holomorphic functions, Arch. Math. (Basel) 51 (1988), 65-70. | Zbl 0631.46028

[00004] [5] J. M. Ansemil and J. Taskinen, On a problem of topologies in infinite dimensional holomorphy, ibid. 54 (1990), 61-64. | Zbl 0711.46032

[00005] [6] R. Aron, L. Moraes and R. Ryan, Factorization of holomorphic mappings in infinite dimensions, Math. Ann. 277 (1987), 617-628. | Zbl 0611.46053

[00006] [7] P. Aviles and J. Mujica, Holomorphic germs and homogeneous polynomials on quasinormable metrizable spaces, Rend. Mat. 6 (1977), 117-127. | Zbl 0444.46038

[00007] [8] J. A. Barroso, Topologias nos espaços de aplicações holomorfas ebtre espaços localmente convexos, An. Acad. Brasil. Ciênc. 43 (1971), 525-546.

[00008] [9] J. A. Barroso and L. Nachbin, Some topological properties of spaces of holomorphic mappings in infinitely many variables, in: Advances in Holomorphy, J. A. Barroso (ed.), North-Holland Math. Stud. 34, North-Holland, 1979, 67-91. | Zbl 0409.46052

[00009] [10] K.-D. Bierstedt and J. Bonet, Density conditions in Fréchet and (DF)-spaces, Rev. Mat. Univ. Complut. Madrid 2 (1989), no. suplementario, 59-75. | Zbl 0745.46002

[00010] [11] K.-D. Bierstedt and R. Meise, Aspects of inductive limits in spaces of germs of holomorphic functions on locally convex spaces and applications to a study of ((U),τω), in: Advances in Holomorphy, J. A. Barroso (ed.), North-Holland Math. Stud. 34, North-Holland, 1979, 111-178.

[00011] [12] P. Boland and S. Dineen, Holomorphic functions on fully nuclear spaces, Bull. Soc. Math. France 106 (1978), 311-336. | Zbl 0402.46017

[00012] [13] J. Bonet, J. C. Dí az and J. Taskinen, Tensor stable Fréchet and (DF) spaces, Collect. Math., to appear. | Zbl 0808.46001

[00013] [14] C. Boyd, Distinguished preduals of the space of holomorphic functions, Rev. Mat. Univ. Complut. Madrid, to appear. | Zbl 0809.46031

[00014] [15] P. G. Casazza and E. W. Odell, Tsirelson space, II, preprint.

[00015] [16] A. Defant and M. Maestre, Holomorphic functions and (BB)-property on Fréchet -Montel spaces, Math. Proc. Cambridge Philos. Soc., to appear. | Zbl 0847.46021

[00016] [17] J. C. Dí az and A. M. Miñarro, Distinguished Fréchet spaces and projective tensor products, Doǧa Mat. 14 (1990), 191-208. | Zbl 0970.46505

[00017] [18] J. C. Dí az and A. M. Miñarro, On Fréchet Montel spaces and projective tensor products, Math. Proc. Cambridge Philos. Soc., to appear.

[00018] [19] S. Dineen, Complex Analysis on Locally Convex Spaces, North-Holland Math. Stud. 57, North-Holland, 1981. | Zbl 0484.46044

[00019] [20] S. Dineen, Holomorphic functions on Fréchet-Montel spaces, J. Math. Anal. Appl. 163 (1992), 581-587. | Zbl 0849.46031

[00020] [21] S. Dineen, Quasinormable spaces of holomorphic functions, Note Mat., to appear. | Zbl 0838.46036

[00021] [22] P. Galindo, D. García and M. Maestre, The coincidence of τ0 and τω for spaces of holomorphic functions on some Fréchet-Montel spaces, Proc. Roy. Irish Acad. 91A (1991), 137-143. | Zbl 0725.46025

[00022] [23] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).

[00023] [24] J. Horváth, Topological Vector Spaces and Distributions, Vol. 1, Addison-Wesley, Reading, Mass., 1966.

[00024] [25] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.

[00025] [26] N. Kalton, Schauder decompositions in locally convex spaces, Proc. Cambridge Philos. Soc. 68 (1970), 377-392. | Zbl 0196.13505

[00026] [27] P. Mazet, Analytic Sets in Locally Convex Spaces, North-Holland Math. Stud. 89, North-Holland, 1984.

[00027] [28] R. Meise, A remark on the ported and the compact-open topology for spaces of holomorphic functions on nuclear Fréchet spaces, Proc. Roy. Irish Acad. 81A (1981), 217-223. | Zbl 0483.46019

[00028] [29] J. Mujica, A Banach-Dieudonné theorem for the space of germs of holomorphic functions, J. Funct. Anal. 57 (1984), 31-48. | Zbl 0546.46021

[00029] [30] J. Mujica, Holomorphic approximation in infinite-dimensional Riemann domains, Studia Math. 82 (1985), 107-134. | Zbl 0584.32035

[00030] [31] J. Mujica and L. Nachbin, Linearization of holomorphic mappings on locally convex spaces, J. Math. Pures Appl. 71 (1992), 543-560. | Zbl 0849.46032

[00031] [32] A. Peris, Productos tensoriales de espacios localmente convexos casinormables y otras clases relacionadas, thesis, Universidad de Valencia, 1992.

[00032] [33] R. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, thesis, Trinity College Dublin, 1980.

[00033] [34] H. H. Schaefer, Topological Vector Spaces, 3rd printing corrected, Springer, 1971.

[00034] [35] J. Schmets, Espaces de fonctions continues, Lecture Notes in Math. 519, Springer, 1976. | Zbl 0334.46022

[00035] [36] M. Schottenloher, τω=τ0 for domains in , in: Infinite Dimensional Holomorphy and Applications, M. Matos (ed.), North-Holland Math. Stud. 12, North-Holland, 1977, 393-395.

[00036] [37] J. Taskinen, Examples of non-distinguished Fréchet spaces, Ann. Acad. Sci. Fenn. Ser. AI Math. 14 (1989), 75-88. | Zbl 0632.46002

[00037] [38] B. S. Tsirelson, Not every Banach space contains an imbedding of p or c0, Functional Anal. Appl. 8 (1974), 138-141.