Pseudotopologies with applications to one-parameter groups, von Neumann algebras, and Lie algebra representations
Rusinek, Jan
Studia Mathematica, Tome 104 (1993), p. 273-286 / Harvested from The Polish Digital Mathematics Library

For any pair E,F of pseudotopological vector spaces, we endow the space L(E,F) of all continuous linear operators from E into F with a pseudotopology such that, if G is a pseudotopological space, then the mapping L(E,F) × L(F,G) ∋ (f,g) → gf ∈ L(E,G) is continuous. We use this pseudotopology to establish a result about differentiability of certain operator-valued functions related with strongly continuous one-parameter semigroups in Banach spaces, to characterize von Neumann algebras, and to establish a result about integration of Lie algebra representations.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216033
@article{bwmeta1.element.bwnjournal-article-smv107i3p273bwm,
     author = {Jan Rusinek},
     title = {Pseudotopologies with applications to one-parameter groups, von Neumann algebras, and Lie algebra representations},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {273-286},
     zbl = {0810.46005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv107i3p273bwm}
}
Rusinek, Jan. Pseudotopologies with applications to one-parameter groups, von Neumann algebras, and Lie algebra representations. Studia Mathematica, Tome 104 (1993) pp. 273-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv107i3p273bwm/

[00000] [B] A. Bastiani, Applications différentiables et variétés différentiables de dimension infinie, J. Anal. Math. 13 (1964), 1-114. | Zbl 0196.44103

[00001] [B-R] O. Bratteli and D. Robinson, Operator Algebras and Quantum Statistical Mechanics, Springer, New York, 1979.

[00002] [D] E. B. Davies, One-Parameter Semigroups, Academic Press, London, 1980. | Zbl 0457.47030

[00003] [F-B] A. Frölicher and W. Bucher, Calculus in Vector Spaces without Norm, Lecture Notes in Math. 30, Springer, New York, 1966. | Zbl 0156.38303

[00004] [J-M] P. E. T. Jørgensen and T. Moore, Operator Commutation Relations, Reidel, Dordrecht, 1984.

[00005] [Ke] H. H. Keller, Differenzierbarkeit in topologischen Vektorräumen, Comment. Math. Helv. 38 (1964), 308-320. | Zbl 0124.06402

[00006] [K] J. Kisyński, On the integration of a Lie algebra representation in a Banach space, internal report, International Centre for Theoretical Physics, Triest, 1974.

[00007] [R] J. Rusinek, Analytic vectors and integrability of Lie algebra representations, J. Funct. Anal. 74 (1987), 10-23. | Zbl 0643.22007

[00008] [T-W] J. Tits and L. Waelbroeck, The integration of a Lie algebra representation, Pacific J. Math. 26 (1968), 595-600. | Zbl 0172.18602