It is proved that if a metrizable locally convex space is not nuclear, then it does not satisfy the Lévy-Steinitz theorem on rearrangement of series.
@article{bwmeta1.element.bwnjournal-article-smv107i3p213bwm, author = {Wojciech Banaszczyk}, title = {Rearrangement of series in nonnuclear spaces}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {213-222}, zbl = {0811.46004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv107i3p213bwm} }
Banaszczyk, Wojciech. Rearrangement of series in nonnuclear spaces. Studia Mathematica, Tome 104 (1993) pp. 213-222. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv107i3p213bwm/
[00000] [1] M. Banaszczyk and W. Banaszczyk, Characterization of nuclear spaces by means of additive subgroups, Math. Z. 186 (1984), 125-133. | Zbl 0526.46004
[00001] [2] W. Banaszczyk, The Steinitz theorem on rearrangement of series for nuclear spaces, J. Reine Angew. Math. 403 (1990), 187-200. | Zbl 0682.46002
[00002] [3] W. Banaszczyk and J. Grabowski, Connected subgroups of nuclear spaces, Studia Math. 78 (1984), 161-163. | Zbl 0537.46007