The first part of the paper presents results on Gaussian measures supported by general Banach sequence spaces and by particular spaces of Besov-Orlicz type. In the second part, a new constructive isomorphism between the just mentioned sequence spaces and corresponding function spaces is established. Consequently, some results on the support function spaces for the Gaussian measure corresponding to the fractional Brownian motion are proved. Next, an application to stochastic equations is given. The last part of the paper contains a result on the support function spaces for stable processes with independent increments.
@article{bwmeta1.element.bwnjournal-article-smv107i2p171bwm, author = {Z. Ciesielski and G. Kerkyacharian and B. Roynette}, title = {Quelques espaces fonctionnels associ\'es \`a des processus gaussiens}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {171-204}, language = {fr}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv107i2p171bwm} }
Ciesielski, Z.; Kerkyacharian, G.; Roynette, B. Quelques espaces fonctionnels associés à des processus gaussiens. Studia Mathematica, Tome 104 (1993) pp. 171-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv107i2p171bwm/
[00000] [C0] Z. Ciesielski, Hölder conditions for realizations of Gaussian processes, Trans. Amer. Math. Soc. 99 (1961), 403-413. | Zbl 0133.10502
[00001] [C1] Z. Ciesielski, On the isomorphisms of the spaces and m, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 217-222.
[00002] [C2] Z. Ciesielski, Some properties of Schauder basis of the space C ⟨0,1⟩, ibid., 141-144. | Zbl 0093.07001
[00003] [C3] Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963), 141-157. | Zbl 0113.27204
[00004] [C4] Z. Ciesielski, Properties of the orthonormal Franklin system, II, ibid. 27 (1966), 289-323. | Zbl 0148.04702
[00005] [C5] Z. Ciesielski, Constructive function theory and spline systems, ibid. 53 (1975), 277-302. | Zbl 0273.41010
[00006] [C6] Z. Ciesielski, Orlicz spaces, spline systems and brownian motion, Constr. Approx. 9 (1993), 191-208. | Zbl 0814.46022
[00007] [DHJS] R. Dudley, J. Hoffmann-Jørgensen and L. Shepp, On the lower tail of Gaussian seminorms, Ann. Probab. 7 (1979), 319-342. | Zbl 0424.60041
[00008] [F] X. Fernique, Régularité de processus gaussiens, Invent. Math. 12 (1971), 304-320. | Zbl 0217.21104
[00009] [G] H. Gebelein, Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung, Z. Angew. Math. Mech. 21 (1941), 364-379. | Zbl 0026.33402
[00010] [KR] G. Kerkyacharian et B. Roynette, Une démonstration simple des théorèmes de Kolmogorov, Donsker et Itô-Nisio, C. R. Acad. Sci. Paris Sér. I 312 (1991), 877-882. | Zbl 0764.60008
[00011] [K] M. A. Krasnosel'skiĭ and Ya. B. Rutickiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
[00012] [LT] M. Ledoux and M. Talagrand, Probability on Banach Spaces, Ergeb. Math. Grenzgeb. 23, Springer, Berlin, 1991.
[00013] [M] Y. Meyer, Ondelettes et opérateurs I, Hermann, 1990. | Zbl 0694.41037
[00014] [N] E. Nelson, The free Markoff field, J. Funct. Anal. 12 (1973), 211-227. | Zbl 0273.60079
[00015] [Nu] D. Nualart, Noncausal stochastic integrals and calculus, in: Lecture Notes in Math. 1316, Springer, 1988, 80-129.
[00016] [O] S. Ogawa, The stochastic integral of noncausal type as an extension of the symmetric integrals, Japan J. Appl. Math. 2 (1985), 229-240. | Zbl 0616.60056
[00017] [R] S. Ropela, Spline bases in Besov spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 319-325. | Zbl 0328.41008
[00018] [Ro] B. Roynette, Mouvement brownien et espaces de Besov, Stochastics and Stochastics Rep. (1993), à paraître.
[00019] [S] P. Sjögren, Riemann sums for stochastic integrals and moduli of continuity, Z. Wahrsch. Verw. Gebiete 59 (1982), 411-424.
[00020] [T] M. Talagrand, Sur l'intégrabilité des vecteurs gaussiens, ibid. 68 (1984), 1-8. | Zbl 0529.60034