Closed range multipliers and generalized inverses
Laursen, K. ; Mbekhta, M.
Studia Mathematica, Tome 104 (1993), p. 127-135 / Harvested from The Polish Digital Mathematics Library

Conditions involving closed range of multipliers on general Banach algebras are studied. Numerous conditions equivalent to a splitting A = TA ⊕ kerT are listed, for a multiplier T defined on the Banach algebra A. For instance, it is shown that TA ⊕ kerT = A if and only if there is a commuting operator S for which T = TST and S = STS, that this is the case if and only if such S may be taken to be a multiplier, and that these conditions are also equivalent to the existence of a factorization T = PB, where P is an idempotent and B an invertible multiplier. The latter condition establishes a connection to a famous problem of harmonic analysis.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216025
@article{bwmeta1.element.bwnjournal-article-smv107i2p127bwm,
     author = {K. Laursen and M. Mbekhta},
     title = {Closed range multipliers and generalized inverses},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {127-135},
     zbl = {0812.47031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv107i2p127bwm}
}
Laursen, K.; Mbekhta, M. Closed range multipliers and generalized inverses. Studia Mathematica, Tome 104 (1993) pp. 127-135. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv107i2p127bwm/

[00000] P. Aiena and K. B. Laursen, Multipliers with closed range on regular commutative Banach algebras, Proc. Amer. Math. Soc., to appear. | Zbl 0806.47032

[00001] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973. | Zbl 0271.46039

[00002] R. Harte and M. Mbekhta, On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71-77. | Zbl 0810.46062

[00003] H. Heuser, Functional Analysis, Wiley, New York, 1982. | Zbl 0465.47001

[00004] B. Host et F. Parreau, Sur un problème de I. Glicksberg: Les idéaux fermés de type fini de M(G), Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 143-164. | Zbl 0368.43001

[00005] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. | Zbl 0090.09003

[00006] R. Larsen, An Introduction to the Theory of Multipliers, Springer, Berlin, 1971. | Zbl 0213.13301

[00007] C. Rickart, General Theory of Banach Algebras, van Nostrand, Princeton, 1960. | Zbl 0095.09702