Some duality results and some inequalities are proved for two-parameter Vilenkin martingales, for Fourier backwards martingales and for Vilenkin and Fourier coefficients.
@article{bwmeta1.element.bwnjournal-article-smv107i2p115bwm, author = {Ferenc Weisz}, title = {An application of two-parameter martingales in harmonic analysis}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {115-126}, zbl = {0808.60043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv107i2p115bwm} }
Weisz, Ferenc. An application of two-parameter martingales in harmonic analysis. Studia Mathematica, Tome 104 (1993) pp. 115-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv107i2p115bwm/
[00000] [1] A. Benedek and R. Panzone, The spaces , with mixed norm, Duke Math. J. 28 (1961), 301-324. | Zbl 0107.08902
[00001] [2] A. Bernard, Espaces H¹ de martingales à deux indices. Dualité avec les martingales de type <
[00002] [3] J. Brossard, Comparaison des “normes” du processus croissant et de la variable maximale pour les martingales régulières à deux indices. Théorème local correspondant, Ann. Probab. 8 (1980), 1183-1188. | Zbl 0454.60047
[00003] [4] J. Brossard, Régularité des martingales à deux indices et inégalités de normes, in: Processus Aléatoires à Deux Indices, Lecture Notes in Math. 863, Springer, Berlin, 1981, 91-121. | Zbl 0473.60045
[00004] [5] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42. | Zbl 0301.60035
[00005] [6] R. Cairoli, Une inégalité pour martingales à indices multiples et ses applications, in: Séminaire de Probabilités IV, Lecture Notes in Math. 124, Springer, Berlin, 1970, 1-27. | Zbl 0218.60045
[00006] [7] R. Cairoli and J. B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975), 111-183. | Zbl 0334.60026
[00007] [8] J.-A. Chao and S. Janson, A note on H¹ q-martingales, Pacific J. Math. 97 (1981), 307-317. | Zbl 0438.60041
[00008] [9] A. M. Garsia, Martingale Inequalities. Seminar Notes on Recent Progress, Math. Lecture Notes Ser., Benjamin, New York, 1973.
[00009] [10] R. F. Gundy, Inégalités pour martingales à un et deux indices: L’espace , in: Ecole d’Eté de Probabilités de Saint-Flour VIII-1978, Lecture Notes in Math. 774, Springer, Berlin, 1980, 251-331.
[00010] [11] R. F. Gundy and N. T. Varopoulos, A martingale that occurs in harmonic analysis, Ark. Mat. 14 (1976), 179-187. | Zbl 0371.60058
[00011] [12] A. Gut, Convergence of reversed martingales with multidimensional indices, Duke Math. J. 43 (1976), 269-275. | Zbl 0338.60027
[00012] [13] C. Metraux, Quelques inégalités pour martingales à paramètre bidimensionnel, in: Séminaire de Probabilités XII, Lecture Notes in Math. 649, Springer, Berlin, 1978, 170-179. | Zbl 0381.60042
[00013] [14] J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971.
[00014] [15] F. Schipp, On a generalization of the concept of orthogonality, Acta Sci. Math. (Szeged) 37 (1975), 279-285. | Zbl 0349.42010
[00015] [16] F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, 1990. | Zbl 0727.42017
[00016] [17] E. M. Stein, Topics in Harmonic Analysis, Princeton Univ. Press, 1970. | Zbl 0193.10502
[00017] [18] F. Weisz, Conjugate martingale transforms, Studia Math. 103 (1992), 207-220. | Zbl 0809.60056
[00018] [19] F. Weisz, Dyadic martingale Hardy and VMO spaces on the plane, Acta Math. Hungar. 56 (1990), 143-154. | Zbl 0718.60042
[00019] [20] F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233. | Zbl 0728.60046
[00020] [21] F. Weisz, Martingale Hardy spaces for 0 < p ≤ 1, Probab. Theory Related Fields 84 (1990), 361-376. | Zbl 0687.60046
[00021] [22] F. Weisz, On duality problems of two-parameter martingale Hardy spaces, Bull. Sci. Math. 114 (1990), 395-410. | Zbl 0746.60048