Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm
Pełczyński, A. ; Wojciechowski, M.
Studia Mathematica, Tome 104 (1993), p. 61-100 / Harvested from The Polish Digital Mathematics Library

Let E be a Banach space. Let L¹(1)(d,E) be the Sobolev space of E-valued functions on d with the norm ʃdfEdx+ʃdfEdx=f+f. It is proved that if fL¹(1)(d,E) then there exists a sequence (gm)L(1)¹(d,E) such that f=mgm; m(gm+gm)<; and gm1/dgm(d-1)/dbgm for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding L(1)¹(d,E)L²(d,E). In particular, the embedding into Besov spaces L¹(1)(d,E)Bp,1θ(p,d)(d,E) is proved, where θ(p,d)=d(p-1+d-1-1) for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216022
@article{bwmeta1.element.bwnjournal-article-smv107i1p61bwm,
     author = {A. Pe\l czy\'nski and M. Wojciechowski},
     title = {Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {61-100},
     zbl = {0811.46028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv107i1p61bwm}
}
Pełczyński, A.; Wojciechowski, M. Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm. Studia Mathematica, Tome 104 (1993) pp. 61-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv107i1p61bwm/

[00000] [A] T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, C. R. Acad. Sci. Paris 280 (1975), 279-281. | Zbl 0295.53024

[00001] [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, London, 1988. | Zbl 0647.46057

[00002] [Br1] J. Bourgain, A Hardy inequality in Sobolev spaces, Vrije University, Brussels, 1981.

[00003] [Br2] J. Bourgain, Some examples of multipliers in Sobolev spaces, IHES, 1985.

[00004] [BZ] Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities, Nauka, Leningrad, 1980 (in Russian); English transl.: Springer, 1988.

[00005] [CSV] T. Coulhon, L. Saloff-Coste and N. Varopoulos, Analysis and Geometry on Groups, Cambridge University Press, Cambridge, 1992. | Zbl 0813.22003

[00006] [DS] N. Dunford and J. T. Schwartz, Linear Operators I, Interscience, New York, 1958.

[00007] [F] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969. | Zbl 0176.00801

[00008] [FF] H. Federer and W. H. Fleming, Normal and integral currents, Ann. of Math. 72 (1960), 458-520. | Zbl 0187.31301

[00009] [G] E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102-137. | Zbl 0089.09401

[00010] [Hö] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983.

[00011] [H] R. Hunt, On L(p,q) spaces, Enseign. Math. (2) 12 (1966), 249-275. | Zbl 0181.40301

[00012] [Jo] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. | Zbl 0489.30017

[00013] [K] V. I. Kolyada, On relations between moduli of continuity in different metrics, Trudy Mat. Inst. Steklov. 181 (1988), 117-136 (in Russian); English transl.: Proc. Steklov Inst. Math. 4 (1989), 127-148.

[00014] [Kr] A. S. Kronrod, On functions of two variables, Uspekhi Mat. Nauk 5 (1) (1950), 24-134 (in Russian).

[00015] [Le] M. Ledoux, Semigroup proofs of the isoperimetric inequality in euclidean and Gauss space, Bull. Sci. Math., to appear.

[00016] [LW] L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc. 55 (1949), 961-962. | Zbl 0035.38302

[00017] [M1] V. G. Maz'ya, Classes of sets and embedding theorems for function spaces, Dokl. Akad. Nauk SSSR 133 (1960), 527-530 (in Russian).

[00018] [M2] V. G. Maz'ya, S. L. Sobolev's Spaces, Leningrad University Publishing House, Leningrad, 1985 (in Russian).

[00019] [N] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 116-162. | Zbl 0088.07601

[00020] [Pee] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Durham, N.C., 1976.

[00021] [Po] S. Poornima, An embedding theorem for the Sobolev space W1,1, Bull. Sci. Math. (2) 107 (1983), 253-259. | Zbl 0529.46025

[00022] [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J., 1970.

[00023] [T] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. | Zbl 0353.46018

[00024] [Tr] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel 1983.