We show that, if the coefficients (an) in a series tend to 0 as n → ∞ and satisfy the regularity condition that , then the cosine series represents an integrable function on the interval [-π,π]. We also show that, if the coefficients (bn) in a series tend to 0 and satisfy the corresponding regularity condition, then the sine series represents an integrable function on [-π,π] if and only if . These conclusions were previously known to hold under stronger restrictions on the sizes of the differences and . We were led to the mixed-norm conditions that we use here by our recent discovery that the same combination of conditions implies the integrability of Walsh series with coefficients (an) tending to 0. We also show here that this condition on the differences implies that the cosine series converges in L¹-norm if and only if as n → ∞. The corresponding statement also holds for sine series for which . If either type of series is assumed a priori to represent an integrable function, then weaker regularity conditions suffice for the validity of this criterion for norm convergence.
@article{bwmeta1.element.bwnjournal-article-smv107i1p33bwm, author = {Bruce Aubertin and John Fournier}, title = {Integrability theorems for trigonometric series}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {33-59}, zbl = {0809.42001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv107i1p33bwm} }
Aubertin, Bruce; Fournier, John. Integrability theorems for trigonometric series. Studia Mathematica, Tome 104 (1993) pp. 33-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv107i1p33bwm/
[00000] [1] B. Aubertin and J. J. F. Fournier, An integrability theorem for Walsh series, Boll. Un. Mat. Ital., to appear. | Zbl 0812.42015
[00001] [2] A. E. Baernstein III and E. Sawyer, Embedding and multiplier theorems for , Mem. Amer. Math. Soc. 318 (1985).
[00002] [3] L. A. Balashov and S. A. Telyakovskiĭ, Some properties of lacunary series and the integrability of trigonometric series, Trudy Mat. Inst. Steklov. Akad. Nauk SSSR 143 (1977), 32-41 (in Russian); English transl.: Proc. Steklov Inst. Math. 1980 (1), 33-43.
[00003] [4] N. Bari, A Treatise on Trigonometric Series, 2 vols., translated by Margaret F. Mullins, MacMillan, New York, 1964.
[00004] [5] F. F. Bonsall, Boundedness of Hankel matrices, J. London Math. Soc. (2) 29 (1984), 289-300. | Zbl 0561.47027
[00005] [6] W. O. Bray and V. Stanojević, On the integrability of complex trigonometric series, Proc. Amer. Math. Soc. 93 (1985), 51-58. | Zbl 0562.42006
[00006] [7] M. Buntinas, Some new multiplier theorems for Fourier series, Proc. Amer. Math. Soc. 101 (1987), 497-502. | Zbl 0642.42009
[00007] [8] M. Buntinas and N. Tanović-Miller, New integrability and L¹-convergence classes for even trigonometric series II, in: Approximation Theory, J. Szabados and K. Tandori (eds.), Colloq. Math. Soc. János Bolyai 58, North-Holland, Amsterdam, 1991, 103-125.
[00008] [9] D. Ćeranić and N. Tanović-Miller, An integrability and L¹-convergence class for general trigonometric series, to appear.
[00009] [10] C.-P. Chen, L¹-convergence of Fourier series, J. Austral. Math. Soc. Ser. A 41 (1986), 376-390. | Zbl 0642.42005
[00010] [11] R. A. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023
[00011] [12] J. R. Dorronsoro, Mean oscillation and Besov spaces, Canad. Math. Bull. 28 (1985), 474-480. | Zbl 0648.46032
[00012] [13] G. A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), 213-222 (in Russian); English transl.: Math. Notes 23 (1978), 117-123.
[00013] [14] J. J. F. Fournier and W. M. Self, Some sufficient conditions for uniform convergence of Fourier series, J. Math. Anal. Appl. 126 (1987), 355-374. | Zbl 0639.42002
[00014] [15] J. J. F. Fournier and J. Stewart, Amalgams of and , Bull. Amer. Math. Soc. (N. S.) 13 (1985), 1-21.
[00015] [16] D. Grow and V. B. Stanojević, Representations of Fourier coefficients in tauberian L¹-convergence classes, J. Math. Anal. Appl. 160 (1991), 47-50. | Zbl 0737.42003
[00016] [17] C. S. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech. 18 (1968), 283-323. | Zbl 0177.15701
[00017] [18] F. Holland, Harmonic analysis on amalgams of and , J. London Math. Soc. (2) 10 (1975), 295-305.
[00018] [19] F. Holland and D. Walsh, Boundedness criteria for Hankel operators, Proc. R. Irish Acad. 84A (1984), 141-154. | Zbl 0549.47011
[00019] [20] A. S. Kolmogorov, Sur l'ordre de grandeur des coefficients de la série de Fourier-Lebesgue, Bull. Internat. Acad. Polon. Sci. Lettres (A) Sci. Math. 1923, 83-86.
[00020] [21] F. Móricz, On the integrability and L¹-convergence of complex trigonometric series, Proc. Amer. Math. Soc. 113 (1991), 53-64. | Zbl 0728.42003
[00021] [22] F. Móricz, On L¹-convergence of Walsh series. II, Acta Math. Hungar. 58 (1991), 203-210.
[00022] [23] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser., Durham, N.C., 1976. | Zbl 0356.46038
[00023] [24] M. Pepić and N. Tanović-Miller, to appear.
[00024] [25] M. Plancherel et G. Pólya, Fonctions entières et intégrales de Fourier multiples, Parties et , Comment. Math. Helv. 9 (1936-1937), 224-248; 10 (1937-38), 110-163.
[00025] [26] F. Ricci and M. Taibleson, Boundary values of harmonic functions in mixed-norm spaces and their atomic structure, Ann. Scuola Norm. Sup. Pisa (4) 10 (1983), 1-54. | Zbl 0527.30040
[00026] [27] S. Sidon, Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc. 14 (1939), 158-160. | Zbl 65.0255.02
[00027] [28] W. T. Sledd and D. A. Stegenga, An H¹ multiplier theorem, Ark. Mat. 19 (1981), 265-270. | Zbl 0488.42022
[00028] [29] Č. V. Stanojević, Classes of L¹-convergence of Fourier and Fourier-Stieltjes series, Proc. Amer. Math. Soc. 82 (1981), 209-215.
[00029] [30] Č. V. Stanojević, Structure of Fourier coefficients and Fourier-Stieltjes coefficients of series with slowly varying convergence moduli, Bull. Amer. Math. Soc. 19 (1988), 283-286. | Zbl 0663.42008
[00030] [31] S. J. Szarek and T. Wolniewicz, A proof of Fefferman's theorem on multipliers, preprint 209, Institute of Mathematics, Polish Academy of Sciences, 1980. | Zbl 0446.42007
[00031] [32] P. Szeptycki, On functions and measures whose Fourier transforms are measures, Math. Ann. 179 (1968), 31-41. | Zbl 0167.41601
[00032] [33] N. Tanović-Miller, On integrability and L¹-convergence of cosine series, Boll. Un. Mat. Ital. (7) 4-B (1990), 499-516. | Zbl 0725.42007
[00033] [34] S. A. Telyakovskiĭ, Integrability conditions of trigonometric series and their applications to the study of linear methods of summing Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1209-1236 (in Russian).
[00034] [35] S. A. Telyakovskiĭ, Concerning a sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki 14 (1973), 317-328 (in Russian); English transl.: Math. Notes 14 (1973), 742-748.
[00035] [36] W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. (2) 12 (1913), 41-70. | Zbl 44.0300.03
[00036] [37] A. Zygmund, Trigonometric Series, 2 volumes, Cambridge University Press, Cambridge 1959. | Zbl 0085.05601