Factorization of Montel operators
Dierolf, S. ; Domański, P.
Studia Mathematica, Tome 104 (1993), p. 15-32 / Harvested from The Polish Digital Mathematics Library

Consider the following conditions. (a) Every regular LB-space is complete; (b) if an operator T between complete LB-spaces maps bounded sets into relatively compact sets, then T factorizes through a Montel LB-space; (c) for every complete LB-space E the space C (βℕ, E) is bornological. We show that (a) ⇒ (b) ⇒ (c). Moreover, we show that if E is Montel, then (c) holds. An example of an LB-space E with a strictly increasing transfinite sequence of its Mackey derivatives is given.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216019
@article{bwmeta1.element.bwnjournal-article-smv107i1p15bwm,
     author = {S. Dierolf and P. Doma\'nski},
     title = {Factorization of Montel operators},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {15-32},
     zbl = {0810.46002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv107i1p15bwm}
}
Dierolf, S.; Domański, P. Factorization of Montel operators. Studia Mathematica, Tome 104 (1993) pp. 15-32. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv107i1p15bwm/

[00000] [1] K. D. Bierstedt, An introduction to locally convex inductive limits, in: Functional Analysis and its Applications, World Sci., Singapore, 1988, 35-133. | Zbl 0786.46001

[00001] [2] K. D. Bierstedt and J. Bonet, Stefan Heinrich's density condition for Fréchet spaces and the characterization of distinguished Köthe echelon spaces, Math. Nachr. 135 (1988), 149-180. | Zbl 0688.46001

[00002] [3] K. D. Bierstedt and J. Bonet, Dual density conditions in (DF)-spaces, Results Math. 14 (1988), 242-274. | Zbl 0688.46002

[00003] [4] J. Bonet, Sobre ciertos espacios de funciones continuas con valores vectoriales, Rev. Real Acad. Cienc. Madrid 75 (3) (1981), 757-767.

[00004] [5] J. Bonet and S. Dierolf, Fréchet spaces of Moscatelli type, Rev. Mat. Univ. Complutense Madrid 2 (1990), 77-92. | Zbl 0757.46001

[00005] [6] J. Bonet and S. Dierolf, On (LB)-spaces of Moscatelli type, Doğa Mat. 13 (1990), 9-33. | Zbl 0970.46508

[00006] [7] J. Bonet and J. Schmets, Examples of bornological C(X,E) spaces, ibid. 10 (1986), 83-90. | Zbl 0970.46546

[00007] [8] J. Bonet and J. Schmets, Bornological spaces of type C(X)εE and C(X,E), Funct. Approx. Comment. Math. 17 (1987), 37-44. | Zbl 0619.46038

[00008] [9] B. Cascales and J. Orihuela, Metrizability of precompact subsets in (LF)-spaces, Proc. Roy. Soc. Edinburgh 103A (1986), 293-299. | Zbl 0622.46005

[00009] [10] B. Cascales and J. Orihuela, On compactness in locally convex spaces, Math. Z. 195 (1987), 365-381. | Zbl 0604.46011

[00010] [11] W. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. | Zbl 0306.46020

[00011] [12] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.

[00012] [13] S. Heinrich, Closed operator ideals and interpolation, J. Funct. Anal. 35 (1980), 397-411. | Zbl 0439.47029

[00013] [14] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001

[00014] [15] H. Junek, Locally Convex Spaces and Operator Ideals, Teubner, Leipzig, 1983.

[00015] [16] G. Köthe, Topological Vector Spaces, Springer, Berlin, 1969. | Zbl 0179.17001

[00016] [17] V. B. Moscatelli, Fréchet spaces without continuous norm and without a basis, Bull. London Math. Soc. 12 (1980), 63-66. | Zbl 0407.46002

[00017] [18] J. Mujica, A completeness criterion for inductive limits of Banach spaces, in: Functional Analysis, Holomorphy and Approximation Theory II, J. A. Barroso (ed.), North-Holland, Amsterdam, 1984, 319-329.

[00018] [19] H. Pfister, Bemerkungen zum Satz über die Separabilität der Fréchet-Montel Räume, Arch. Math. (Basel) 27 (1976), 86-92. | Zbl 0318.46005

[00019] [20] J. Schmets, Spaces of Vector-Valued Continuous Functions, Lecture Notes in Math. 1003, Springer, Berlin, 1983.

[00020] [21] M. Valdivia, Semi-Suslin and dual metric spaces, in: Functional Analysis, Holomorphy and Approximation Theory, J. A. Barroso (ed.), North-Holland, Amsterdam, 1982, 445-459.

[00021] [22] S. Dierolf and P. Domański, Compact subsets of coechelon spaces, to appear. | Zbl 0872.46001

[00022] [23] J. Bonet, P. Domański and J. Mujica, Complete spaces of vector-valued holomorphic germs, to appear. | Zbl 0824.46003