We prove that every quotient algebra of a unital Banach function algebra A has a unique complete norm if A is a Ditkin algebra. The theorem applies, for example, to the algebra A (Γ) of Fourier transforms of the group algebra of a locally compact abelian group (with identity adjoined if Γ is not compact). In such algebras non-semisimple quotients arise from closed subsets E of Γ which are sets of non-synthesis. Examples are given to show that the condition of Ditkin cannot be relaxed. We construct a variety of mutually non-equivalent norms for quotients of the Mirkil algebra M, which fails Ditkin’s condition at only one point of .
@article{bwmeta1.element.bwnjournal-article-smv106i3p289bwm, author = {W. Bade and H. Dales}, title = {Uniqueness of complete norms for quotients of Banach function algebras}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {289-302}, zbl = {0811.46050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i3p289bwm} }
Bade, W.; Dales, H. Uniqueness of complete norms for quotients of Banach function algebras. Studia Mathematica, Tome 104 (1993) pp. 289-302. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i3p289bwm/
[00000] [1] A. Atzmon, On the union of sets of synthesis and Ditkin's condition in regular Banach algebras, Bull. Amer. Math. Soc. 2 (1980), 317-320. | Zbl 0432.43004
[00001] [2] B. Aupetit, The uniqueness of the complete norm topology in Banach algebras and Banach-Jordan algebras, J. Funct. Anal. 47 (1982), 1-6. | Zbl 0488.46043
[00002] [3] W. G. Bade, P. C. Curtis, Jr. and K. B. Laursen, Automatic continuity in algebras of differentiable functions, Math. Scand. 70 (1977), 249-270. | Zbl 0373.46061
[00003] [4] W. G. Bade and H. G. Dales, The Wedderburn decomposability of some commutative Banach algebras, J. Funct. Anal. 107 (1992), 105-121. | Zbl 0765.46036
[00004] [5] B. E. Johnson, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc. 73 (1967), 537-539. | Zbl 0172.41004
[00005] [6] H. Mirkil, A counterexample to discrete spectral synthesis, Compositio Math. 14 (1960), 269-273. | Zbl 0099.10203
[00006] [7] T. J. Ransford, A short proof of Johnson's uniqueness-of-norm theorem, Bull. London Math. Soc. 21 (1989), 487-488. | Zbl 0705.46028
[00007] [8] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Math. Monographs, Oxford Univ. Press, 1968. | Zbl 0165.15601
[00008] [9] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, 1976. | Zbl 0313.47029