We prove the uniform weak (1,1) boundedness of a class of oscillatory singular integrals under certain conditions on the phase functions. Our conditions allow the phase function to be completely flat. Examples of such phase functions include and . Some related counterexample is also discussed.
@article{bwmeta1.element.bwnjournal-article-smv106i3p279bwm, author = {Yibiao Pan}, title = {On the weak (1,1) boundedness of a class of oscillatory singular integrals}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {279-287}, zbl = {0812.42011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i3p279bwm} }
Pan, Yibiao. On the weak (1,1) boundedness of a class of oscillatory singular integrals. Studia Mathematica, Tome 104 (1993) pp. 279-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i3p279bwm/
[00000] [1] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155. | Zbl 0667.42007
[00001] [2] S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. | Zbl 0594.42007
[00002] [3] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. | Zbl 0188.42601
[00003] [4] Y. Hu, Oscillatory singular integrals on weighted Hardy spaces, Studia Math. 102 (1992), 145-156. | Zbl 0808.42009
[00004] [5] Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311-320. | Zbl 0779.42007
[00005] [6] A. Nagel, J. Vance, S. Wainger, and D. Weinberg, Hilbert transforms for convex curves, Duke Math. J. 50 (1983), 735-744. | Zbl 0524.44001
[00006] [7] A. Nagel and S. Wainger, Hilbert transforms associated with plane curves, Trans. Amer. Math. Soc. 223 (1976), 235-252. | Zbl 0341.44005
[00007] [8] Y. Pan, Uniform estimates for oscillatory integral operators, J. Funct. Anal. 100 (1991), 207-220. | Zbl 0735.45010
[00008] [9] Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64. | Zbl 0728.42013
[00009] [10] Y. Pan, Weak (1,1) estimate for oscillatory singular integrals with real-analytic phases, Proc. Amer. Math. Soc., to appear. | Zbl 0803.42002
[00010] [11] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157. | Zbl 0622.42011
[00011] [12] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Funct. Anal. 73 (1987), 179-194. | Zbl 0622.42010
[00012] [13] P. Sjölin, Convolution with oscillating kernels on spaces, J. London Math. Soc. 23 (1981), 442-454 . | Zbl 0426.46034
[00013] [14] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton 1986, 307-355.
[00014] [15] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton 1970. | Zbl 0207.13501
[00015] [16] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge 1959. | Zbl 0085.05601