On the weak (1,1) boundedness of a class of oscillatory singular integrals
Pan, Yibiao
Studia Mathematica, Tome 104 (1993), p. 279-287 / Harvested from The Polish Digital Mathematics Library

We prove the uniform weak (1,1) boundedness of a class of oscillatory singular integrals under certain conditions on the phase functions. Our conditions allow the phase function to be completely flat. Examples of such phase functions include ϕ(x)=e-1/x2 and ϕ(x)=xe-1/|x|. Some related counterexample is also discussed.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216017
@article{bwmeta1.element.bwnjournal-article-smv106i3p279bwm,
     author = {Yibiao Pan},
     title = {On the weak (1,1) boundedness of a class of oscillatory singular integrals},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {279-287},
     zbl = {0812.42011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i3p279bwm}
}
Pan, Yibiao. On the weak (1,1) boundedness of a class of oscillatory singular integrals. Studia Mathematica, Tome 104 (1993) pp. 279-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i3p279bwm/

[00000] [1] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155. | Zbl 0667.42007

[00001] [2] S. Chanillo, D. Kurtz and G. Sampson, Weighted weak (1,1) and weighted Lp estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. | Zbl 0594.42007

[00002] [3] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. | Zbl 0188.42601

[00003] [4] Y. Hu, Oscillatory singular integrals on weighted Hardy spaces, Studia Math. 102 (1992), 145-156. | Zbl 0808.42009

[00004] [5] Y. Hu and Y. Pan, Boundedness of oscillatory singular integrals on Hardy spaces, Ark. Mat. 30 (1992), 311-320. | Zbl 0779.42007

[00005] [6] A. Nagel, J. Vance, S. Wainger, and D. Weinberg, Hilbert transforms for convex curves, Duke Math. J. 50 (1983), 735-744. | Zbl 0524.44001

[00006] [7] A. Nagel and S. Wainger, Hilbert transforms associated with plane curves, Trans. Amer. Math. Soc. 223 (1976), 235-252. | Zbl 0341.44005

[00007] [8] Y. Pan, Uniform estimates for oscillatory integral operators, J. Funct. Anal. 100 (1991), 207-220. | Zbl 0735.45010

[00008] [9] Y. Pan, Hardy spaces and oscillatory singular integrals, Rev. Mat. Iberoamericana 7 (1991), 55-64. | Zbl 0728.42013

[00009] [10] Y. Pan, Weak (1,1) estimate for oscillatory singular integrals with real-analytic phases, Proc. Amer. Math. Soc., to appear. | Zbl 0803.42002

[00010] [11] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms I, Acta Math. 157 (1986), 99-157. | Zbl 0622.42011

[00011] [12] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, I, J. Funct. Anal. 73 (1987), 179-194. | Zbl 0622.42010

[00012] [13] P. Sjölin, Convolution with oscillating kernels on Hp spaces, J. London Math. Soc. 23 (1981), 442-454 . | Zbl 0426.46034

[00013] [14] E. M. Stein, Oscillatory integrals in Fourier analysis, in: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton 1986, 307-355.

[00014] [15] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton 1970. | Zbl 0207.13501

[00015] [16] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, Cambridge 1959. | Zbl 0085.05601