Calderón couples of rearrangement invariant spaces
Kalton, N.
Studia Mathematica, Tome 104 (1993), p. 233-277 / Harvested from The Polish Digital Mathematics Library

We examine conditions under which a pair of rearrangement invariant function spaces on [0,1] or [0,∞) form a Calderón couple. A very general criterion is developed to determine whether such a pair is a Calderón couple, with numerous applications. We give, for example, a complete classification of those spaces X which form a Calderón couple with L. We specialize our results to Orlicz spaces and are able to give necessary and sufficient conditions on an Orlicz function F so that the pair (LF,L) forms a Calderón pair.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216016
@article{bwmeta1.element.bwnjournal-article-smv106i3p233bwm,
     author = {N. Kalton},
     title = {Calder\'on couples of rearrangement invariant spaces},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {233-277},
     zbl = {0810.46020},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i3p233bwm}
}
Kalton, N. Calderón couples of rearrangement invariant spaces. Studia Mathematica, Tome 104 (1993) pp. 233-277. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i3p233bwm/

[00000] [1] J. Arazy and M. Cwikel, A new characterization of the interpolation spaces between Lp and Lq, Math. Scand. 55 (1984), 253-270. | Zbl 0571.46049

[00001] [2] S. F. Bellenot, The Banach spaces of Maurey and Rosenthal and totally incomparable bases, J. Funct. Anal. 95 (1991), 96-105. | Zbl 0723.46001

[00002] [3] S. F. Bellenot, R. Haydon and E. Odell, Quasi-reflexive and tree spaces constructed in the spirit of R. C. James, in: Contemp. Math. 85, Amer. Math. Soc., 1987, 19-43. | Zbl 0726.46005

[00003] [4] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York 1988. | Zbl 0647.46057

[00004] [5] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin 1976. | Zbl 0344.46071

[00005] [6] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge Univ. Press, 1987. | Zbl 0617.26001

[00006] [7] Yu. Brudnyĭ and N. Kruglyak, Real interpolation functors, Soviet Math. Dokl. 23 (1981), 5-8. | Zbl 0475.46052

[00007] [8] Yu. Brudnyĭ and N. Kruglyak, Interpolation Functors and Interpolation Spaces, North-Holland, 1991.

[00008] [9] A. P. Calderón, Spaces between L1 and L and the theorems of Marcinkiewicz, Studia Math. 26 (1966), 273-299. | Zbl 0149.09203

[00009] [10] P. G. Casazza, W. B. Johnson and L. Tzafriri, On Tsirelson's space, Israel J. Math. 47 (1984), 81-98.

[00010] [11] P. G. Casazza and B. L. Lin, On symmetric basic sequences in Lorentz sequence spaces, II, ibid. 17 (1974), 191-218. | Zbl 0286.46019

[00011] [12] P. G. Casazza and T. J. Shura, Tsirelson's space, Lecture Notes in Math. 1363, Springer, Berlin 1989. | Zbl 0709.46008

[00012] [13] M. Cwikel, Monotonicity properties of interpolation spaces, Ark. Mat. 14 (1976), 213-236. | Zbl 0339.46024

[00013] [14] M. Cwikel, Monotonicity properties of interpolation spaces II, ibid. 19 (1981), 123-136. | Zbl 0467.46061

[00014] [15] M. Cwikel, K-divisibility of the K-functional and Calderón couples, ibid. 22 (1984), 39-62. | Zbl 0535.46049

[00015] [16] M. Cwikel and P. Nilsson, On Calderón-Mityagin couples of Banach lattices, in: Proc. Conf. Constructive Theory of Functions, Varna 1984, Bulgarian Acad. Sci., 1984, 232-236. | Zbl 0606.46050

[00016] [17] M. Cwikel and P. Nilsson, Interpolation of Marcinkiewicz spaces, Math. Scand. 56 (1985), 29-42. | Zbl 0551.46052

[00017] [18] M. Cwikel and P. Nilsson, Interpolation of weighted Banach lattices, Mem. Amer. Math. Soc., to appear. | Zbl 0548.46058

[00018] [19] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1934.

[00019] [20] F. L. Hernandez and B. Rodriguez-Salinas, On p-complemented copies in Orlicz spaces II, Israel J. Math. 68 (1989), 27-55. | Zbl 0689.46006

[00020] [21] P. W. Jones, On interpolation between H1 and H, in: Interpolation Spaces and Allied Topics in Analysis, Proc. Lund Conference 1983, M. Cwikel and J. Peetre (eds.), Lecture Notes in Math. 1070, Springer, 1984, 143-151.

[00021] [22] J. L. Krivine, Sous espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. 104 (1976), 1-29. | Zbl 0329.46008

[00022] [23] J. Lindenstrauss and L. Tzafriri, On the complemented subspaces problem, Israel J. Math. 9 (1971), 263-269. | Zbl 0211.16301

[00023] [24] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin 1977. | Zbl 0362.46013

[00024] [25] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin 1979. | Zbl 0403.46022

[00025] [26] G. G. Lorentz, Relations between function spaces, Proc. Amer. Math. Soc. 12 (1961), 127-132.

[00026] [27] G. G. Lorentz and T. Shimogaki, Interpolation theorems for the pairs of spaces (L1,Lp) and (Lp,L), Trans. Amer. Math. Soc. 159 (1971), 207-222.

[00027] [28] L. Maligranda, On Orlicz results in interpolation theory, in: Proc. Orlicz Memorial Conference, Univ. of Mississippi, 1990. | Zbl 0760.46058

[00028] [29] L. Maligranda and V. I. Ovchinnikov, On interpolation between L1+L and L1L, J. Funct. Anal. 107 (1992), 342-351.

[00029] [30] C. Merucci, Interpolation réelle avec fonction paramètre: réitération et applications aux espaces Λp(ϕ)(0<p+), C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 427-430. | Zbl 0504.46055

[00030] [31] C. Merucci, Applications of interpolation with a function parameter to Lorentz, Sobolev and Besov spaces, in: Interpolation Spaces and Allied Topics in Analysis, Proc. Lund Conference 1983, M. Cwikel and J. Peetre (eds.), Lecture Notes in Math. 1070, Springer, 1984, 183-201.

[00031] [32] B. S. Mityagin, An interpolation theorem for modular spaces, Mat. Sb. 66 (1965), 473-482 (in Russian).

[00032] [33] S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 (1992), 161-189. | Zbl 0814.46023

[00033] [34] V. I. Ovchinnikov, On the estimates of interpolation orbits, Mat. Sb. 115 (1981), 642-652 (in Russian) (= Math. USSR-Sb. 43 (1982), 573-583).

[00034] [35] A. A. Sedaev and E. M. Semenov, On the possibility of describing interpolation spaces in terms of Peetre's K-method, Optimizatsiya 4 (1971), 98-114 (in Russian). | Zbl 0253.46080

[00035] [36] G. Sparr, Interpolation of weighted Lp-spaces, Studia Math. 62 (1978), 229-271. | Zbl 0393.46029

[00036] [37] B. S. Tsirelson, Not every Banach space contains an embedding of p or c0, Functional Anal. Appl. 8 (1974), 138-141.

[00037] [38] Q. Xu, Notes on interpolation of Hardy spaces, Ann. Inst. Fourier (Grenoble) 42 (1992), 877-889. | Zbl 0760.46060

[00038] [39] M. Zippin, On perfectly homogeneous bases in Banach spaces, Israel J. Math. 4 (1966), 265-272. | Zbl 0148.11202