We prove the existence of complex Banach spaces X such that every element F in the bidual X** of X has a unique best approximation π(F) in X, the equality ∥F∥ = ∥π (F)∥ + ∥F - π (F)∥ holds for all F in X**, but the mapping π is not linear.
@article{bwmeta1.element.bwnjournal-article-smv106i2p197bwm, author = {Angel Rodr\'\i guez Palacios}, title = {Properly semi-L-embedded complex spaces}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {197-202}, zbl = {0810.46017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i2p197bwm} }
Rodríguez Palacios, Angel. Properly semi-L-embedded complex spaces. Studia Mathematica, Tome 104 (1993) pp. 197-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i2p197bwm/
[00000] [1] C. Aparicio, F. Ocaña, R. Payá and A. Rodríguez, A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges, Glasgow Math. J. 28 (1986), 121-137. | Zbl 0604.46021
[00001] [2] T. J. Barton and R. M. Timoney, Weak* continuity of Jordan triple products and applications, Math. Scand. 59 (1986), 177-191. | Zbl 0621.46044
[00002] [3] E. Behrends, Points of symmetry of convex sets in the two-dimensional complex space. A counterexample to D. Yost's problem, Math. Ann. 290 (1991), 463-471. | Zbl 0757.46017
[00003] [4] E. Behrends and P. Harmand, Banach spaces which are proper M-ideals, Studia Math. 81 (1985), 159-169. | Zbl 0529.46015
[00004] [5] P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1983), 253-264. | Zbl 0545.46009
[00005] [6] P. Harmand and T. S. S. R. K. Rao, An intersection property of balls and relations with M-ideals, Math. Z. 197 (1988), 277-290. | Zbl 0618.46020
[00006] [7] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math., Springer, to appear. | Zbl 0789.46011
[00007] [8] Å. Lima, Intersection properties of balls and subspaces of Banach spaces, Trans. Amer. Math. Soc. 229 (1977), 1-62. | Zbl 0347.46017
[00008] [9] J. Martínez, J. F. Mena, R. Payá and A. Rodríguez, An approach to numerical ranges without Banach algebra theory, Illinois J. Math. 29 (1985), 609-626. | Zbl 0604.46052
[00009] [10] J. F. Mena, R. Payá and A. Rodríguez, Absolute subspaces of Banach spaces, Quart. J. Math. Oxford 40 (1989), 43-64. | Zbl 0693.46014
[00010] [11] R. Payá and A. Rodríguez, Banach spaces which are semi-M-summands in their biduals, Math. Ann. 289 (1991), 529-542. | Zbl 0712.46005
[00011] [12] D. Yost, Semi-M-ideals in complex Banach spaces, Rev. Roumaine Math. Pures Appl. 29 (1984), 619-623. | Zbl 0578.46015