Topological tensor products of a Fréchet-Schwartz space and a Banach space
Peris, Alfredo
Studia Mathematica, Tome 104 (1993), p. 189-196 / Harvested from The Polish Digital Mathematics Library

We exhibit examples of countable injective inductive limits E of Banach spaces with compact linking maps (i.e. (DFS)-spaces) such that EεX is not an inductive limit of normed spaces for some Banach space X. This solves in the negative open questions of Bierstedt, Meise and Hollstein. As a consequence we obtain Fréchet-Schwartz spaces F and Banach spaces X such that the problem of topologies of Grothendieck has a negative answer for FπX. This solves in the negative a question of Taskinen. We also give examples of Fréchet-Schwartz spaces and (DFS)-spaces without the compact approximation property and with the compact approximation property but without the approximation property.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216012
@article{bwmeta1.element.bwnjournal-article-smv106i2p189bwm,
     author = {Alfredo Peris},
     title = {Topological tensor products of a Fr\'echet-Schwartz space and a Banach space},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {189-196},
     zbl = {0810.46008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i2p189bwm}
}
Peris, Alfredo. Topological tensor products of a Fréchet-Schwartz space and a Banach space. Studia Mathematica, Tome 104 (1993) pp. 189-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i2p189bwm/

[00000] [1] K. D. Bierstedt, J. Bonet and A. Galbis, Weighted spaces of holomorphic functions on balanced domains, Michigan Math. J., to appear. | Zbl 0803.46023

[00001] [2] K. D. Bierstedt, J. Bonet and A. Peris, Vector-valued holomorphic germs on Fréchet-Schwartz spaces, Proc. Roy. Irish Acad., to appear.

[00002] [3] K. D. Bierstedt und R. Meise, Induktive Limiten gewichteter Räume stetiger und holomorpher Funktionen, J. Reine Angew. Math. 282 (1976), 186-220. | Zbl 0318.46034

[00003] [4] J. Bonet and J. C. Díaz, The problem of topologies of Grothendieck and the class of Fréchet T-spaces, Math. Nachr. 150 (1991), 109-118. | Zbl 0754.46043

[00004] [5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), reprint 1966.

[00005] [6] R. Hollstein, Tensor sequences and inductive limits with local partition of unity, Manuscripta Math. 52 (1985), 227-249. | Zbl 0576.46053

[00006] [7] H. Jarchow, Locally Convex Spaces, Math. Leitfäden, B. G. Teubner, Stuttgart 1981.

[00007] [8] W. B. Johnson, Factoring compact operators, Israel J. Math. 9 (1971), 337-345. | Zbl 0236.47045

[00008] [9] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin 1979. | Zbl 0403.46022

[00009] [10] P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Stud. 131, North-Holland, Amsterdam 1987. | Zbl 0614.46001

[00010] [11] A. Peris, Quasinormable spaces and the problem of topologies of Grothendieck, Ann. Acad. Sci. Fenn. Ser. AI Math., to appear. | Zbl 0789.46006

[00011] [12] J. Taskinen, Counterexamples to "Problème des topologies" of Grothendieck, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 63 (1986). | Zbl 0612.46069

[00012] [13] J. Taskinen, (FBa)- and (FBB)-spaces, Math. Z. 198 (1988), 339-365. | Zbl 0628.46068

[00013] [14] J. Taskinen, The projective tensor product of Fréchet-Montel spaces, Studia Math. 91 (1988), 17-30. | Zbl 0654.46060

[00014] [15] G. Willis, The Compact Approximation Property does not imply the Approximation Property, ibid. 103 (1992), 99-108. | Zbl 0814.46017