Wavelet bases in Lp()
Gripenberg, Gustaf
Studia Mathematica, Tome 104 (1993), p. 175-187 / Harvested from The Polish Digital Mathematics Library

It is shown that an orthonormal wavelet basis for L2() associated with a multiresolution is an unconditional basis for Lp(), 1 < p < ∞, provided the father wavelet is bounded and decays sufficiently rapidly at infinity.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216011
@article{bwmeta1.element.bwnjournal-article-smv106i2p175bwm,
     author = {Gustaf Gripenberg},
     title = {Wavelet bases in $L^{p}($\mathbb{R}$)$
            },
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {175-187},
     zbl = {0811.42010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i2p175bwm}
}
Gripenberg, Gustaf. Wavelet bases in $L^{p}(ℝ)$
            . Studia Mathematica, Tome 104 (1993) pp. 175-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i2p175bwm/

[00000] [1] A. Cohen, Ondelettes, analyses multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), 439-459. | Zbl 0736.42021

[00001] [2] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 909-996. | Zbl 0644.42026

[00002] [3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.

[00003] [4] C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666. | Zbl 0683.42031

[00004] [5] R. C. James, Bases in Banach spaces, Amer. Math. Monthly 89 (1982), 625-640. | Zbl 0506.46006

[00005] [6] P. G. Lemarié, Analyse multi-échelles et ondelettes à support compact, in: Les Ondelettes en 1989, P. G. Lemarié (ed.), Lecture Notes in Math. 1438, Springer, Berlin 1990, 26-38.

[00006] [7] S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(), Trans. Amer. Math. Soc. 315 (1989), 69-87.

[00007] [8] Y. Meyer, Ondelettes et Opérateurs I, Hermann, Paris 1990. | Zbl 0694.41037

[00008] [9] I. Singer, Bases in Banach Spaces, Vol. I, Springer, Berlin 1970.

[00009] [10] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton 1970. | Zbl 0207.13501

[00010] [11] G. Strang, Wavelets and dilation equations: a brief introduction, SIAM Rev. 31 (1989), 614-627. | Zbl 0683.42030

[00011] [12] A. Zygmund, Trigonometric Series, Vol. I, Cambridge University Press, Cambridge 1959. | Zbl 0085.05601