A multidimensional Lyapunov type theorem
Bressan, Alberto
Studia Mathematica, Tome 104 (1993), p. 121-128 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216007
@article{bwmeta1.element.bwnjournal-article-smv106i2p121bwm,
     author = {Alberto Bressan},
     title = {A multidimensional Lyapunov type theorem},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {121-128},
     zbl = {0812.28007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i2p121bwm}
}
Bressan, Alberto. A multidimensional Lyapunov type theorem. Studia Mathematica, Tome 104 (1993) pp. 121-128. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i2p121bwm/

[00000] [1] Z. Artstein, Yet another proof of the Lyapunov convexity theorem, Proc. Amer. Math. Soc. 108 (1990), 89-91. | Zbl 0685.28005

[00001] [2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, New York 1984. | Zbl 0538.34007

[00002] [3] A. Bressan and F. Flores, Multivalued Aumann integrals and controlled wave equations, preprint S.I.S.S.A., Trieste 1992. | Zbl 0828.49005

[00003] [4] L. Cesari, Optimization. Theory and Applications, Springer, New York 1983.

[00004] [5] P. R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416-421. | Zbl 0033.05201

[00005] [6] J. Lindenstrauss, A short proof of Liapounoff's convexity theorem, J. Math. Mech. 15 (1966), 971-972. | Zbl 0152.24403

[00006] [7] A. A. Lyapunov, On completely additive vector-valued functions, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1940), 465-478 (in Russian; French summary).

[00007] [8] C. Olech, The Lyapunov theorem: its extensions and applications, in: Methods of Nonconvex Analysis, A. Cellina (ed.), Lecture Notes in Math. 1446, Springer, 1989, 84-103.

[00008] [9] J. A. Yorke, Another proof of the Liapunov convexity theorem, SIAM J. Control 9 (1971), 351-353. | Zbl 0216.55601