@article{bwmeta1.element.bwnjournal-article-smv106i2p121bwm, author = {Alberto Bressan}, title = {A multidimensional Lyapunov type theorem}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {121-128}, zbl = {0812.28007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i2p121bwm} }
Bressan, Alberto. A multidimensional Lyapunov type theorem. Studia Mathematica, Tome 104 (1993) pp. 121-128. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i2p121bwm/
[00000] [1] Z. Artstein, Yet another proof of the Lyapunov convexity theorem, Proc. Amer. Math. Soc. 108 (1990), 89-91. | Zbl 0685.28005
[00001] [2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, New York 1984. | Zbl 0538.34007
[00002] [3] A. Bressan and F. Flores, Multivalued Aumann integrals and controlled wave equations, preprint S.I.S.S.A., Trieste 1992. | Zbl 0828.49005
[00003] [4] L. Cesari, Optimization. Theory and Applications, Springer, New York 1983.
[00004] [5] P. R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416-421. | Zbl 0033.05201
[00005] [6] J. Lindenstrauss, A short proof of Liapounoff's convexity theorem, J. Math. Mech. 15 (1966), 971-972. | Zbl 0152.24403
[00006] [7] A. A. Lyapunov, On completely additive vector-valued functions, Izv. Akad. Nauk SSSR Ser. Mat. 8 (1940), 465-478 (in Russian; French summary).
[00007] [8] C. Olech, The Lyapunov theorem: its extensions and applications, in: Methods of Nonconvex Analysis, A. Cellina (ed.), Lecture Notes in Math. 1446, Springer, 1989, 84-103.
[00008] [9] J. A. Yorke, Another proof of the Liapunov convexity theorem, SIAM J. Control 9 (1971), 351-353. | Zbl 0216.55601