Pointwise inequalities for Sobolev functions and some applications
Bojarski, Bogdan ; Hajłasz, Piotr
Studia Mathematica, Tome 104 (1993), p. 77-92 / Harvested from The Polish Digital Mathematics Library

We get a class of pointwise inequalities for Sobolev functions. As a corollary we obtain a short proof of Michael-Ziemer’s theorem which states that Sobolev functions can be approximated by Cm functions both in norm and capacity.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216004
@article{bwmeta1.element.bwnjournal-article-smv106i1p77bwm,
     author = {Bogdan Bojarski and Piotr Haj\l asz},
     title = {Pointwise inequalities for Sobolev functions and some applications},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {77-92},
     zbl = {0810.46030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p77bwm}
}
Bojarski, Bogdan; Hajłasz, Piotr. Pointwise inequalities for Sobolev functions and some applications. Studia Mathematica, Tome 104 (1993) pp. 77-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p77bwm/

[00000] [B1] B. Bojarski, Remarks on local function spaces, in: Lecture Notes in Math. 1302, Springer, 1988, 137-152.

[00001] [B2] B. Bojarski, Remarks on some geometric properties of Sobolev mappings, in: Functional Analysis & Related Topics, S. Koshi (ed.), World Scientific, 1991.

[00002] [B3] B. Bojarski, Remarks on Sobolev imbedding inequalities, in: Lecture Notes in Math. 1351, Springer, 1988, 52-68.

[00003] [Bu] V. I. Burenkov, Sobolev's integral representation and Taylor's formula, Trudy Mat. Inst. Steklov. 131 (1974), 33-38 (in Russian). | Zbl 0313.46032

[00004] [CZ] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225. | Zbl 0099.30103

[00005] [F] H. Federer, Geometric Measure Theory, Springer, 1969. | Zbl 0176.00801

[00006] [Fr] O. Frostman, Potentiel d'équilibre et capacité, Meddel. Lunds. Univ. Mat. Sem. 3 (1935). | Zbl 61.1262.02

[00007] [GT] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983. | Zbl 0562.35001

[00008] [GR] V. M. Goldshteĭn and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Nauka, Moscow 1983 (in Russian); English transl.: Kluwer Acad. Publ., 1990.

[00009] [H1] P. Hajłasz, Geometric theory of Sobolev mappings, Master's thesis, Warsaw Univ., 1990 (in Polish).

[00010] [H2] P. Hajłasz, Change of variables formula under minimal assumptions, Colloq. Math. 64 (1993), 93-101. | Zbl 0840.26009

[00011] [H3] P. Hajłasz, Note on Meyers-Serrin's theorem, Exposition. Math., to appear. | Zbl 0799.46042

[00012] [He] L. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510. | Zbl 0283.26003

[00013] [KA] L. Kantorovich and G. Akilov, Functional Analysis, 3rd ed., Nauka, Moscow 1984 (in Russian). | Zbl 0555.46001

[00014] [La] N. S. Landkof, Foundations of Modern Potential Theory, Springer, 1972. | Zbl 0253.31001

[00015] [L] F.-C. Liu, A Lusin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), 645-651. | Zbl 0368.46036

[00016] [M] B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, London 1966. | Zbl 0177.17902

[00017] [Ma] V. G. Maz'ya, Sobolev Spaces, Springer, 1985.

[00018] [Me] N. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292. | Zbl 0242.31006

[00019] [MS] N. Meyers and J. Serrin, H = W, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 1055-1056.

[00020] [MZ] J. Michael and W. Ziemer, A Lusin type approximation of Sobolev functions by smooth functions, in: Contemp. Math. 42, Amer. Math. Soc., 1985, 135-167.

[00021] [R] Yu. G. Reshetnyak, Remarks on integral representations, Sibirsk. Mat. Zh. 25 (5) (1984), 198-200 (in Russian). | Zbl 0597.26018

[00022] [S] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. | Zbl 0207.13501

[00023] [W] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math Soc. 36 (1934), 63-89. | Zbl 0008.24902

[00024] [Z1] W. Ziemer, Uniform differentiability of Sobolev functions, Indiana Univ. Math. J. 37 (1988), 789-799. | Zbl 0677.41033

[00025] [Z2] W. Ziemer, Weakly Differentiable Functions, Springer, 1989.