Let Ω be a bounded strictly pseudoconvex domain in . In this paper we find sufficient conditions on a function f defined on Ω in order that the weighted Bergman projection belong to the Hardy-Sobolev space . The conditions on f we consider are formulated in terms of tent spaces and complex tangential vector fields. If f is holomorphic then these conditions are necessary and sufficient in order that f belong to the Hardy-Sobolev space .
@article{bwmeta1.element.bwnjournal-article-smv106i1p59bwm, author = {William Cohn}, title = {Weighted Bergman projections and tangential area integrals}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {59-76}, zbl = {0811.32001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p59bwm} }
Cohn, William. Weighted Bergman projections and tangential area integrals. Studia Mathematica, Tome 104 (1993) pp. 59-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p59bwm/
[00000] [AB] P. Ahern and J. Bruna, Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of , Rev. Mat. Iberoamericana 4 (1988), 123-153. | Zbl 0685.42008
[00001] [AN] P. Ahern and A. Nagel, Strong estimates for maximal functions with respect to singular measures; with applications to exceptional sets, Duke Math. J. 53 (1986), 359-393. | Zbl 0601.32007
[00002] [AS1] P. Ahern and R. Schneider, Holomorphic Lipschitz functions in pseudoconvex domains, Amer. J. Math. 101 (1979), 543-565. | Zbl 0455.32008
[00003] [AS2] P. Ahern and R. Schneider, A smoothing property of the Henkin and Szegö projections, Duke Math. J. 47 (1980), 135-143. | Zbl 0453.32004
[00004] [B] F. Beatrous, Boundary estimates for derivatives of harmonic functions, Studia Math. 98 (1991), 55-71. | Zbl 0734.42011
[00005] [C] W. Cohn, Tangential characterizations of Hardy-Sobolev spaces, Indiana Univ. Math. J. 40 (1991), 1221-1249. | Zbl 0768.46017
[00006] [CMSt] R. Coifman, Y. Meyer and E. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304-335. | Zbl 0569.42016
[00007] [GK] I. Gohberg and N. Krupnik, Einführung in die Theorie der eindimensionalen singulären Integraloperatoren, Birkhäuser, Basel 1979. | Zbl 0413.47040
[00008] [Gr] S. Grellier, Complex tangential characterizations of Hardy-Sobolev spaces of holomorphic functions, preprint. | Zbl 0779.32001
[00009] [KSt] N. Kerzman and E. M. Stein, The Szegö kernel in terms of Cauchy-Fantappiè kernels, Duke Math. J. 45 (1978), 197-223. | Zbl 0387.32009
[00010] [L] E. Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), 257-272. | Zbl 0688.32020
[00011] [Ra] M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, New York 1986. | Zbl 0591.32002
[00012] [Ru] W. Rudin, Function Theory in the Unit Ball of , Springer, New York 1980.
[00013] [St1] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton 1970.
[00014] [St2] E. M. Stein, Some problems in harmonic analysis, in: Harmonic Analysis in Euclidean Spaces, Proc. Sympos. Pure Math. 35, Amer. Math. Soc., 1979, 3-19.
[00015] [St3] E. M. Stein, Boundary Behavior of Holomorphic Functions of Several Complex Variables, Math. Notes, Princeton Univ. Press, Princeton 1972.