Ergodic properties of skew products with Lasota-Yorke type maps in the base
Kowalski, Zbigniew
Studia Mathematica, Tome 104 (1993), p. 45-57 / Harvested from The Polish Digital Mathematics Library

We consider skew products T(x,y)=(f(x),Te(x)y) preserving a measure which is absolutely continuous with respect to the product measure. Here f is a 1-sided Markov shift with a finite set of states or a Lasota-Yorke type transformation and Ti, i = 1,..., max e, are nonsingular transformations of some probability space. We obtain the description of the set of eigenfunctions of the Frobenius-Perron operator for T and consequently we get the conditions ensuring the ergodicity, weak mixing and exactness of T. We apply these results to random perturbations.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216002
@article{bwmeta1.element.bwnjournal-article-smv106i1p45bwm,
     author = {Zbigniew Kowalski},
     title = {Ergodic properties of skew products with Lasota-Yorke type maps in the base},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {45-57},
     zbl = {0815.28013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p45bwm}
}
Kowalski, Zbigniew. Ergodic properties of skew products with Lasota-Yorke type maps in the base. Studia Mathematica, Tome 104 (1993) pp. 45-57. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p45bwm/

[00000] [1] J. C. Alexander and W. Parry, Discerning fat baker's transformations, in: Dynamical Systems, Proc. Special Year, College Park, Lecture Notes in Math. 1342, Springer, 1988, 1-6. | Zbl 0728.28015

[00001] [2] M. Jabłoński, On invariant measures for piecewise C2-transformations of the n-dimensional cube, Ann. Polon. Math. 43 (1983), 185-195. | Zbl 0591.28014

[00002] [3] S. A. Kalikow, T, T-1 transformation is not loosely Bernoulli, Ann. of Math. 115 (1982), 393-409. | Zbl 0523.28018

[00003] [4] Z. S. Kowalski, Bernoulli properties of piecewise monotonic transformations, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 59-61. | Zbl 0422.28011

[00004] [5] Z. S. Kowalski, A generalized skew product, Studia Math. 87 (1987), 215-222. | Zbl 0651.28013

[00005] [6] Z. S. Kowalski, Stationary perturbations based on Bernoulli processes, ibid. 97 (1990), 53-57. | Zbl 0752.28009

[00006] [7] Z. S. Kowalski, The exactness of generalized skew products, Osaka J. Math. 30 (1993), 57-61. | Zbl 0787.28012

[00007] [8] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math. 6, de Gruyter, 1985.

[00008] [9] I. Meilijson, Mixing properties of a class of skew products, Israel J. Math. 19 (1974), 266-270. | Zbl 0305.28008

[00009] [10] T. Morita, Random iteration of one-dimensional transformations, Osaka J. Math. 22 (1985), 489-518. | Zbl 0583.60061

[00010] [11] T. Morita, Deterministic version lemmas in ergodic theory of random dynamical systems, Hiroshima Math. J. 18 (1988), 15-29. | Zbl 0698.28009

[00011] [12] S. Pelikan, Invariant densities for random maps of the interval, Trans. Amer. Math. Soc. 281 (1984), 813-823. | Zbl 0532.58013

[00012] [13] J. P. Thouvenot, Quelques propriétés des systèmes dynamiques qui se décomposent en un produit de deux systèmes dont l'un est un schéma de Bernoulli, Israel J. Math. 21 (1975), 177-207. | Zbl 0329.28008

[00013] [14] S. Wong, Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc. 246 (1978), 493-500. | Zbl 0401.28011