We consider operators of the form with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space (= B) into itself. In particular, all operators with , a > 0, a ≠ 1, map B into itself.
@article{bwmeta1.element.bwnjournal-article-smv106i1p1bwm, author = {G. Sampson}, title = {Nonconvolution transforms with oscillating kernels that map $B\_{1}^{0,1}$ into itself}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {1-44}, zbl = {0817.47043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p1bwm} }
Sampson, G. Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself. Studia Mathematica, Tome 104 (1993) pp. 1-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p1bwm/
[00000] [1] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillating singular integrals, Duke Math. J. 55 (1987), 141-155. | Zbl 0667.42007
[00001] [2] S. Chanillo and M. Christ, Weak and Mischa Cotlar, preprint, 1985.
[00002] [3] S. Chanillo, D. S. Kurtz and G. Sampson, Weighted weak (1,1) estimates and weighted estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. | Zbl 0594.42007
[00003] [4] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023
[00004] [5] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. | Zbl 0567.47025
[00005] [6] G. S. De Souza, Spaces formed by special atoms, Ph.D. dissertation, S.U.N.Y. at Albany, 1980. | Zbl 0546.30027
[00006] [7] G. S. De Souza and A. Gulisashvili, Special atom decompositions of Besov spaces on fractal sets, preprint, 1990.
[00007] [8] G. S. De Souza and G. Sampson, A real characterization of the pre-dual of Bloch functions, J. London Math. Soc. (2) 27 (1983), 267-276. | Zbl 0488.30040
[00008] [9] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., 1991. | Zbl 0757.42006
[00009] [10] Y. -S. Han and S. Hofmann, T1 theorems for Besov and Triebel-Lizorkin spaces, Trans. Amer. Math. Soc., to appear. | Zbl 0779.42010
[00010] [11] Y.-S. Han, B. Jawerth, M. Taibleson and G. Weiss, Littlewood-Paley theory and ε-families of operators, Colloq. Math. 60/61 (1) (1990), 321-359. | Zbl 0763.46024
[00011] [12] W. B. Jurkat and G. Sampson, The complete solution to the mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. | Zbl 0507.47013
[00012] [13] M. Meyer, Continuité Besov de certains opérateurs intégraux singuliers, Ark. Mat. 27 (1989), 305-318.
[00013] [14] Y. Meyer, La minimalité de l’espace de Besov et la continuité des opérateurs définis par des intégrales singulières, Monografías de Matemáticas 4, Univ. Autónoma de Madrid, 1986.
[00014] [15] M. Reyes, An analytic study of the functions defined on the self-similar fractals, preprint, 1990.
[00015] [16] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, 1. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194. | Zbl 0622.42010
[00016] [17] G. Sampson, Oscillating kernels that map into , Ark. Mat. 18 (1980), 125-144. | Zbl 0473.42013
[00017] [18] G. Sampson, On classes of real analytic families of singular integrals on and , J. London Math. Soc. (2) 23 (1981), 433-441.
[00018] [19] G. Sampson, and weighted estimates for convolutions with singular and oscillating kernels, ibid. 43 (1991), 465-484. | Zbl 0747.42011
[00019] [20] G. Sampson, Operators mapping into and operators mapping into , preprint, 1991.
[00020] [21] P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-56. | Zbl 0419.47020