Nonconvolution transforms with oscillating kernels that map 10,1 into itself
Sampson, G.
Studia Mathematica, Tome 104 (1993), p. 1-44 / Harvested from The Polish Digital Mathematics Library

We consider operators of the form (Ωf)(y)=ʃ-Ω(y,u)f(u)du with Ω(y,u) = K(y,u)h(y-u), where K is a Calderón-Zygmund kernel and hL (see (0.1) and (0.2)). We give necessary and sufficient conditions for such operators to map the Besov space 10,1 (= B) into itself. In particular, all operators with h(y)=ei|y|a, a > 0, a ≠ 1, map B into itself.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216001
@article{bwmeta1.element.bwnjournal-article-smv106i1p1bwm,
     author = {G. Sampson},
     title = {Nonconvolution transforms with oscillating kernels that map $B\_{1}^{0,1}$ into itself},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {1-44},
     zbl = {0817.47043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p1bwm}
}
Sampson, G. Nonconvolution transforms with oscillating kernels that map $Ḃ_{1}^{0,1}$ into itself. Studia Mathematica, Tome 104 (1993) pp. 1-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv106i1p1bwm/

[00000] [1] S. Chanillo and M. Christ, Weak (1,1) bounds for oscillating singular integrals, Duke Math. J. 55 (1987), 141-155. | Zbl 0667.42007

[00001] [2] S. Chanillo and M. Christ, Weak L1 and Mischa Cotlar, preprint, 1985.

[00002] [3] S. Chanillo, D. S. Kurtz and G. Sampson, Weighted weak (1,1) estimates and weighted Lp estimates for oscillating kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. | Zbl 0594.42007

[00003] [4] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023

[00004] [5] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397. | Zbl 0567.47025

[00005] [6] G. S. De Souza, Spaces formed by special atoms, Ph.D. dissertation, S.U.N.Y. at Albany, 1980. | Zbl 0546.30027

[00006] [7] G. S. De Souza and A. Gulisashvili, Special atom decompositions of Besov spaces on fractal sets, preprint, 1990.

[00007] [8] G. S. De Souza and G. Sampson, A real characterization of the pre-dual of Bloch functions, J. London Math. Soc. (2) 27 (1983), 267-276. | Zbl 0488.30040

[00008] [9] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., 1991. | Zbl 0757.42006

[00009] [10] Y. -S. Han and S. Hofmann, T1 theorems for Besov and Triebel-Lizorkin spaces, Trans. Amer. Math. Soc., to appear. | Zbl 0779.42010

[00010] [11] Y.-S. Han, B. Jawerth, M. Taibleson and G. Weiss, Littlewood-Paley theory and ε-families of operators, Colloq. Math. 60/61 (1) (1990), 321-359. | Zbl 0763.46024

[00011] [12] W. B. Jurkat and G. Sampson, The complete solution to the (Lp,Lq) mapping problem for a class of oscillating kernels, Indiana Univ. Math. J. 30 (1981), 403-413. | Zbl 0507.47013

[00012] [13] M. Meyer, Continuité Besov de certains opérateurs intégraux singuliers, Ark. Mat. 27 (1989), 305-318.

[00013] [14] Y. Meyer, La minimalité de l’espace de Besov 10,1 et la continuité des opérateurs définis par des intégrales singulières, Monografías de Matemáticas 4, Univ. Autónoma de Madrid, 1986.

[00014] [15] M. Reyes, An analytic study of the functions defined on the self-similar fractals, preprint, 1990.

[00015] [16] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals, 1. Oscillatory integrals, J. Funct. Anal. 73 (1987), 179-194. | Zbl 0622.42010

[00016] [17] G. Sampson, Oscillating kernels that map H1 into L1, Ark. Mat. 18 (1980), 125-144. | Zbl 0473.42013

[00017] [18] G. Sampson, On classes of real analytic families of singular integrals on H1 and Lp, J. London Math. Soc. (2) 23 (1981), 433-441.

[00018] [19] G. Sampson, Hp and L2 weighted estimates for convolutions with singular and oscillating kernels, ibid. 43 (1991), 465-484. | Zbl 0747.42011

[00019] [20] G. Sampson, Operators mapping 10,1 into 10,1 and operators mapping L2 into L2, preprint, 1991.

[00020] [21] P. Sjölin, Convolution with oscillating kernels, Indiana Univ. Math. J. 30 (1981), 47-56. | Zbl 0419.47020