An inverse Sidon type inequality
Fridli, S.
Studia Mathematica, Tome 104 (1993), p. 283-308 / Harvested from The Polish Digital Mathematics Library

Sidon proved the inequality named after him in 1939. It is an upper estimate for the integral norm of a linear combination of trigonometric Dirichlet kernels expressed in terms of the coefficients. Since the estimate has many applications for instance in L1 convergence problems and summation methods with respect to trigonometric series, newer and newer improvements of the original inequality has been proved by several authors. Most of them are invariant with respect to the rearrangement of the coefficients. Although the newest results are close to best possible, no nontrivial lower estimate has been given so far. The aim of this paper is to give the best rearrangement invariant function of coefficients that can be used in a Sidon type inequality. We also show that it is equivalent to an Orlicz type and a Hardy type norm. Examples of applications are also given.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:216000
@article{bwmeta1.element.bwnjournal-article-smv105i3p283bwm,
     author = {S. Fridli},
     title = {An inverse Sidon type inequality},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {283-308},
     zbl = {0811.42001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i3p283bwm}
}
Fridli, S. An inverse Sidon type inequality. Studia Mathematica, Tome 104 (1993) pp. 283-308. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i3p283bwm/

[00000] [1] R. Bojanic and Č. Stanojević, A class of L1-convergence, Trans. Amer. Math. Soc. 269 (1982), 677-683. | Zbl 0493.42011

[00001] [2] M. Buntinas and N. Tanović-Miller, New integrability and L1-convergence classes for even trigonometric series, Rad. Mat. 6 (1990), 149-170.

[00002] [3] M. Buntinas and N. Tanović-Miller, New integrability and L1-convergence classes for even trigonometric series II, in: Approximation Theory, Kecskemét 1990, Colloq. Math. Soc. János Bolyai 58, North-Holland, 1991, 103-125.

[00003] [4] G. A. Fomin, A class of trigonometric series, Mat. Zametki 23 (1978), 213-222 (in Russian); English transl.: Math. Notes 23 (1978), 117-123.

[00004] [5] B. S. Kashin and A. A. Saakyan, Orthogonal Series, Nauka, Moscow 1984.

[00005] [6] A. N. Kolmogorov, Sur l'ordre de grandeur des coefficients de la série de Fourier-Lebesgue, Bull. Internat. Acad. Polon. Sci. Lettres Sér. (A) Sci. Math. 1923, 83-86.

[00006] [7] M. A. Krasnosel'skiǐ and Ya. B. Rutickiǐ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961.

[00007] [8] F. Móricz, Sidon type inequalities, Publ. Inst. Math. (Beograd) 48 (62) (1990), 101-109. | Zbl 0727.42005

[00008] [9] F. Móricz, On the integrability and L1-convergence of sine series, Studia Math. 92 (1989), 187-200. | Zbl 0671.42006

[00009] [10] F. Schipp, Sidon-type inequalities, in: Approximation Theory, Lecture Notes in Pure and Appl. Math. 138, Dekker, New York 1991, 421-436.

[00010] [11] F. Schipp, W. R. Wade and P. Simon (with assistance from J. Pál), Walsh Series, Hilger, Bristol 1990. | Zbl 0727.42017

[00011] [12] S. Sidon, Hinreichende Bedingungen für den Fourier-Charakter einer trigonometrischen Reihe, J. London Math. Soc. 14 (1939), 158-160. | Zbl 65.0255.02

[00012] [13] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. | Zbl 0232.42007

[00013] [14] N. Tanović-Miller, On integrability and L1 convergence of cosine series, Boll. Un. Mat. Ital. (7) 4-B (1990), 499-516. | Zbl 0725.42007

[00014] [15] S. A. Telyakovskiǐ, Concerning a sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki 14 (1973), 317-328 (in Russian); English transl.: Math. Notes 14 (1973), 742-748.

[00015] [16] S. A. Telyakovskiǐ, On the integrability of sine series, Trudy Mat. Inst. Steklov. 163 (1984), 229-233 (in Russian); English transl.: Proc. Steklov Inst. Mat. 4 (1985), 269-273.

[00016] [17] W. H. Young, On the Fourier series of bounded functions, Proc. London Math. Soc. (2) 12 (1913), 41-70. | Zbl 44.0300.03