A notion of weak invertibility in a unital associative algebra A and a corresponding notion of strong spectrum of an element of A is defined. It is shown that many relationships between the Jacobson radical, the group of invertibles and the spectrum have analogues relating the strong radical, the set of weakly invertible elements and the strong spectrum. The nonunital case is also discussed. A characterization is given of all (submultiplicative) norms on A in which every modular maximal ideal M ⊆ A is closed.
@article{bwmeta1.element.bwnjournal-article-smv105i3p255bwm, author = {Michael Meyer}, title = {Weak invertibility and strong spectrum}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {255-269}, zbl = {0810.46043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i3p255bwm} }
Meyer, Michael. Weak invertibility and strong spectrum. Studia Mathematica, Tome 104 (1993) pp. 255-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i3p255bwm/
[00000] [1] B. Brown and M. H. McCoy, Radicals and subdirect sums, Amer. J. Math. 69 (1947), 46-58. | Zbl 0034.02003
[00001] [2] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York 1974. | Zbl 0299.46062
[00002] [3] A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7 (1971), 1-26. | Zbl 0209.45002
[00003] [4] T. W. Palmer, Spectral algebras, subalgebras and pseudonorms, Rocky Mountain J. Math. 22 (1992), 293-328.
[00004] [5] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Cambridge University Press, 1993, to appear.
[00005] [6] T. J. Ransford, Generalized spectra and analytic multivalued functions, J. London Math. Soc. (2) 29 (1984), 306-322. | Zbl 0508.46036
[00006] [7] C. E. Rickart, On spectral permanence for certain Banach algebras, Proc. Amer. Math. Soc. 4 (1953), 191-196. | Zbl 0051.09106
[00007] [8] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, New York 1960.
[00008] [9] L. B. Schweitzer, A nonspectral dense Banach subalgebra of the irrotational rotation algebra, preprint. | Zbl 0819.46053
[00009] [10] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, Cambridge 1976. | Zbl 0313.47029