A remark on disjointness results for stable processes
Weron, Aleksander
Studia Mathematica, Tome 104 (1993), p. 253-254 / Harvested from The Polish Digital Mathematics Library
Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215997
@article{bwmeta1.element.bwnjournal-article-smv105i3p253bwm,
     author = {Aleksander Weron},
     title = {A remark on disjointness results for stable processes},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {253-254},
     zbl = {0810.60045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i3p253bwm}
}
Weron, Aleksander. A remark on disjointness results for stable processes. Studia Mathematica, Tome 104 (1993) pp. 253-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i3p253bwm/

[00000] [1] S. Cambanis, C. D. Hardin Jr., and A. Weron, Ergodic properties of stationary stable processes, Stochastic Process. Appl. 24 (1987), 1-18. | Zbl 0612.60034

[00001] [2] S. Cambanis, A. Ławniczak, K. Podgórski and A. Weron, Ergodicity and mixing of symmetric infinitely divisible processes, Tech. Rept. No. 346, Univ. North Carolina, 1991.

[00002] [3] M. Hernández and C. Houdré, Disjointness results for some classes of stable processes, this issue, 235-252.

[00003] [4] G. Maruyama, Infinitely divisible processes, Probab. Theory Appl. 15 (1970), 3-23. | Zbl 0268.60036

[00004] [5] K. Urbanik, Some prediction problems for strictly stationary processes, in: Proc. 5th Berkeley Sympos. Math. Statist. Probab., Vol. 2, Part I, Univ. California Press, 1967, 235-258. | Zbl 0226.60065