An example of a generalized completely continuous representation of a locally compact group
Poguntke, Detlev
Studia Mathematica, Tome 104 (1993), p. 189-205 / Harvested from The Polish Digital Mathematics Library

There is constructed a compactly generated, separable, locally compact group G and a continuous irreducible unitary representation π of G such that the image π(C*(G)) of the group C*-algebra contains the algebra of compact operators, while the image π(L1(G)) of the L1-group algebra does not containany nonzero compact operator. The group G is a semidirect product of a metabelian discrete group and a “generalized Heisenberg group”.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215994
@article{bwmeta1.element.bwnjournal-article-smv105i2p189bwm,
     author = {Detlev Poguntke},
     title = {An example of a generalized completely continuous representation of a locally compact group},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {189-205},
     zbl = {0815.22002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i2p189bwm}
}
Poguntke, Detlev. An example of a generalized completely continuous representation of a locally compact group. Studia Mathematica, Tome 104 (1993) pp. 189-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i2p189bwm/

[00000] [1] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris 1969.

[00001] [2] Ph. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), 88-104. | Zbl 0422.46048

[00002] [3] A. Guichardet, Caractères des algèbres de Banach involutives, Ann. Inst. Fourier (Grenoble) 13 (1963), 1-81. | Zbl 0124.07003

[00003] [4] H. Leptin, Verallgemeinerte L1-Algebren und projektive Darstellungen lokal kompakter Gruppen, Invent. Math. 3 (1967), 257-281, 4 (1967), 68-86.

[00004] [5] H. Leptin and D. Poguntke, Symmetry and nonsymmetry for locally compact groups, J. Funct. Anal. 33 (1979), 119-134. | Zbl 0414.43004

[00005] [6] D. Poguntke, Unitary representations of Lie groups and operators of finite rank, Ann. of Math., to appear. | Zbl 0828.22013

[00006] [7] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Clarendon, Oxford 1968. | Zbl 0165.15601