Using characteristic functions of polyhedra, we construct radial p-multipliers which are continuous over but not continuously differentiable through and give a p-multiplier criterion for homogeneous functions over . We also exhibit fractal p-multipliers over the real line.
@article{bwmeta1.element.bwnjournal-article-smv105i2p135bwm, author = {Francisco Gonz\'alez Vieli}, title = {Construction de p-multiplicateurs}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {135-142}, zbl = {0812.42007}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i2p135bwm} }
González Vieli, Francisco. Construction de p-multiplicateurs. Studia Mathematica, Tome 104 (1993) pp. 135-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i2p135bwm/
[00000] [EG] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, Springer, Berlin 1977.
[00001] [Fa] K. Falconer, Fractal Geometry, Wiley, Chichester 1990.
[00002] [Fe] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336. | Zbl 0234.42009
[00003] [H] L. Hörmander, Estimates for translation invariant operators in spaces, Acta Math. 104 (1960), 94-140. | Zbl 0093.11402
[00004] [L] R. Larsen, An Introduction to the Theory of Multipliers, Springer, New York 1971. | Zbl 0213.13301
[00005] [dL] K. de Leeuw, On multipliers, Ann. of Math. 81 (1965), 364-379.
[00006] [Ł] S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley, Chichester 1988. | Zbl 0653.26001
[00007] [St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.