The aim of this paper is to establish transference and restriction theorems for maximal operators defined by multipliers on the Hardy spaces and , 0 < p ≤ 1, which generalize the results of Kenig-Tomas for the case p > 1. We prove that under a mild regulation condition, an function m is a maximal multiplier on if and only if it is a maximal multiplier on . As an application, the restriction of maximal multipliers to lower dimensional Hardy spaces is considered.
@article{bwmeta1.element.bwnjournal-article-smv105i2p121bwm, author = {Zhixin Liu and Shanzhen Lu}, title = {Transference and restriction of maximal multiplier operators on Hardy spaces}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {121-134}, zbl = {0812.42010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i2p121bwm} }
Liu, Zhixin; Lu, Shanzhen. Transference and restriction of maximal multiplier operators on Hardy spaces. Studia Mathematica, Tome 104 (1993) pp. 121-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i2p121bwm/
[00000] [1] E. Berkson, T. A. Gillespie and P. S. Muhly, -Multiplier transference induced by representations in Hilbert space, Studia Math. 94 (1989), 51-61. | Zbl 0722.43001
[00001] [2] R. R. Coifman and G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence, R.I., 1977. | Zbl 0371.43009
[00002] [3] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[00003] [4] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. | Zbl 0551.46018
[00004] [5] C. E. Kenig and P. A. Tomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), 79-83. | Zbl 0442.42013
[00005] [6] K. de Leeuw, On multipliers, Ann. of Math. 81 (1965), 364-379.
[00006] [7] Z. X. Liu, Multipliers on real Hardy spaces, Scientia in China (Ser. A) 35 (1992), 55-69.
[00007] [8] C. Meaney, Transferring estimates for zonal convolution operators, Anal. Math. 15 (1989), 175-193. | Zbl 0694.43004
[00008] [9] A. Miyachi, On some Fourier multipliers for , J. Fac. Sci. Tokyo Sect. IA 27 (1980), 157-179. | Zbl 0433.42019
[00009] [10] M. Plancherel et G. Pólya, Fonctions entières intégrales de Fourier multiples, Comment. Math. Helv. 9 (1937), 224-248. | Zbl 63.0377.02
[00010] [11] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals II. Singular kernels supported on submanifolds, J. Funct. Anal. 78 (1988), 56-84. | Zbl 0645.42019
[00011] [12] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 68-149. | Zbl 0472.46041