Given two n-tuples and of bounded linear operators on a Hilbert space the question of when there exists an elementary operator E such that for all j =1,...,n, is studied. The analogous question for left multiplications (instead of elementary operators) is answered in any C*-algebra A, as a consequence of the characterization of closed left A-submodules in .
@article{bwmeta1.element.bwnjournal-article-smv105i1p77bwm, author = {Bojan Magajna}, title = {Interpolation by elementary operators}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {77-92}, zbl = {0812.47030}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p77bwm} }
Magajna, Bojan. Interpolation by elementary operators. Studia Mathematica, Tome 104 (1993) pp. 77-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p77bwm/
[00000] [1] C. Apostol and L. Fialkow, Structural properties of elementary operators, Canad. J. Math. 38 (1986), 1485-1524. | Zbl 0627.47015
[00001] [2] K. R. Davidson, Nest Algebras, Pitman Res. Notes in Math. 191, Pitman, 1988.
[00002] [3] L. Fialkow, The range inclusion problem for elementary operators, Michigan Math. J. 34 (1987), 451-459. | Zbl 0644.47037
[00003] [4] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs 18, Amer. Math. Soc., Providence, R.I., 1969. | Zbl 0181.13504
[00004] [5] B. E. Johnson, Centralizers and operators reduced by maximal ideals, J. London Math. Soc. 43 (1968), 231-233. | Zbl 0157.20601
[00005] [6] R. V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509. | Zbl 0751.46041
[00006] [7] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vols. I and II, Academic Press, London 1983 and 1986. | Zbl 0518.46046
[00007] [8] D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), in: Proc. Sympos. Pure Math. 51, Part 2, Amer. Math. Soc., 1990, 187-194. | Zbl 0713.47045
[00008] [9] B. Magajna, A system of operator equations, Canad. Math. Bull. 30 (1987), 200-209.
[00009] [10] B. Magajna, A transitivity theorem for algebras of elementary operators, Proc. Amer. Math. Soc., to appear. | Zbl 0799.46068
[00010] [11] M. Mathieu, Elementary operators on prime C*-algebras I, Math. Ann. 284 (1989), 223-244. | Zbl 0648.46052
[00011] [12] M. Mathieu, Rings of quotients of ultraprime Banach algebras, with applications to elementary operators, Proc. Centre Math. Anal. Austral. Nat. Univ. 21 (1989), 297-317.
[00012] [13] G. K. Pedersen, Analysis Now, Graduate Texts in Math. 118, Springer, New York 1989.
[00013] [14] V. S. Šulman, Operator algebras with strongly cyclic vectors, Mat. Zametki 16 (1974), 253-257 (in Russian).