Interpolation by elementary operators
Magajna, Bojan
Studia Mathematica, Tome 104 (1993), p. 77-92 / Harvested from The Polish Digital Mathematics Library

Given two n-tuples a=(a1,...,an) and b=(b1,...,bn) of bounded linear operators on a Hilbert space the question of when there exists an elementary operator E such that Eaj=bj for all j =1,...,n, is studied. The analogous question for left multiplications (instead of elementary operators) is answered in any C*-algebra A, as a consequence of the characterization of closed left A-submodules in An.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215985
@article{bwmeta1.element.bwnjournal-article-smv105i1p77bwm,
     author = {Bojan Magajna},
     title = {Interpolation by elementary operators},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {77-92},
     zbl = {0812.47030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p77bwm}
}
Magajna, Bojan. Interpolation by elementary operators. Studia Mathematica, Tome 104 (1993) pp. 77-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p77bwm/

[00000] [1] C. Apostol and L. Fialkow, Structural properties of elementary operators, Canad. J. Math. 38 (1986), 1485-1524. | Zbl 0627.47015

[00001] [2] K. R. Davidson, Nest Algebras, Pitman Res. Notes in Math. 191, Pitman, 1988.

[00002] [3] L. Fialkow, The range inclusion problem for elementary operators, Michigan Math. J. 34 (1987), 451-459. | Zbl 0644.47037

[00003] [4] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs 18, Amer. Math. Soc., Providence, R.I., 1969. | Zbl 0181.13504

[00004] [5] B. E. Johnson, Centralizers and operators reduced by maximal ideals, J. London Math. Soc. 43 (1968), 231-233. | Zbl 0157.20601

[00005] [6] R. V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509. | Zbl 0751.46041

[00006] [7] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vols. I and II, Academic Press, London 1983 and 1986. | Zbl 0518.46046

[00007] [8] D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), in: Proc. Sympos. Pure Math. 51, Part 2, Amer. Math. Soc., 1990, 187-194. | Zbl 0713.47045

[00008] [9] B. Magajna, A system of operator equations, Canad. Math. Bull. 30 (1987), 200-209.

[00009] [10] B. Magajna, A transitivity theorem for algebras of elementary operators, Proc. Amer. Math. Soc., to appear. | Zbl 0799.46068

[00010] [11] M. Mathieu, Elementary operators on prime C*-algebras I, Math. Ann. 284 (1989), 223-244. | Zbl 0648.46052

[00011] [12] M. Mathieu, Rings of quotients of ultraprime Banach algebras, with applications to elementary operators, Proc. Centre Math. Anal. Austral. Nat. Univ. 21 (1989), 297-317.

[00012] [13] G. K. Pedersen, Analysis Now, Graduate Texts in Math. 118, Springer, New York 1989.

[00013] [14] V. S. Šulman, Operator algebras with strongly cyclic vectors, Mat. Zametki 16 (1974), 253-257 (in Russian).