Integral formulae for special cases of Taylor's functional calculus
Albrecht, D.
Studia Mathematica, Tome 104 (1993), p. 51-68 / Harvested from The Polish Digital Mathematics Library

In this paper integral formulae, based on Taylor's functional calculus for several operators, are found. Special cases of these formulae include those of Vasilescu and Janas, and an integral formula for commuting operators with real spectra.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215983
@article{bwmeta1.element.bwnjournal-article-smv105i1p51bwm,
     author = {D. Albrecht},
     title = {Integral formulae for special cases of Taylor's functional calculus},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {51-68},
     zbl = {0810.47013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p51bwm}
}
Albrecht, D. Integral formulae for special cases of Taylor's functional calculus. Studia Mathematica, Tome 104 (1993) pp. 51-68. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p51bwm/

[00000] [1] D. W. Albrecht, Matrix techniques in the study of complexes, Analysis Paper 79, Monash University, Clayton, Victoria, 1991.

[00001] [2] R. Arens, Analytic-functional calculus in commutative topological algebras, Pacific J. Math. 11 (1961), 405-429. | Zbl 0109.34203

[00002] [3] I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Math. Appl. 9, Gordon and Breach, New York 1968. | Zbl 0189.44201

[00003] [4] G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sb. 78 (1969), 611-632 (in Russian).

[00004] [5] J. Janas, On integral formulas and their applications in functional calculus, J. Math. Anal. Appl. 114 (1986), 328-339. | Zbl 0604.47009

[00005] [6] S. Lang, Algebra, Addison-Wesley, 1965.

[00006] [7] A. McIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting operators, Macquarie Math. Reports (1986), 86-0069.

[00007] [8] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer, New York 1986. | Zbl 0591.32002

[00008] [9] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. | Zbl 0233.47024

[00009] [10] J. L. Taylor, Analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. | Zbl 0233.47025

[00010] [11] F. H. Vasilescu, A Martinelli type formula for the analytic functional calculus, Rev. Roumaine Math. Pures Appl. 23 (10) (1978), 1587-1605. | Zbl 0402.47011

[00011] [12] V. S. Vladimirov, Methods of the Theory of Functions of Several Complex Variables, Nauka, Moscow 1964; English transl.: M.I.T. Press, Cambridge, Mass., 1966.