The decomposability of operators relative to two subspaces
Katavolos, A. ; Lambrou, M. ; Longstaff, W.
Studia Mathematica, Tome 104 (1993), p. 25-36 / Harvested from The Polish Digital Mathematics Library

Let M and N be nonzero subspaces of a Hilbert space H satisfying M ∩ N = {0} and M ∨ N = H and let T ∈ ℬ(H). Consider the question: If T leaves each of M and N invariant, respectively, intertwines M and N, does T decompose as a sum of two operators with the same property and each of which, in addition, annihilates one of the subspaces? If the angle between M and N is positive the answer is affirmative. If the angle is zero, the answer is still affirmative for finite rank operators but there are even trace class operators for which it is negative. An application gives an alternative proof that no distance estimate holds for the algebra of operators leaving M and N invariant if the angle is zero, and an analogous result is obtained for the set of operators intertwining M and N.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215981
@article{bwmeta1.element.bwnjournal-article-smv105i1p25bwm,
     author = {A. Katavolos and M. Lambrou and W. Longstaff},
     title = {The decomposability of operators relative to two subspaces},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {25-36},
     zbl = {0810.47037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p25bwm}
}
Katavolos, A.; Lambrou, M.; Longstaff, W. The decomposability of operators relative to two subspaces. Studia Mathematica, Tome 104 (1993) pp. 25-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p25bwm/

[00000] [1] S. Argyros, M. S. Lambrou and W. E. Longstaff, Atomic Boolean subspace lattices and applications to the theory of bases, Mem. Amer. Math. Soc. 445 (1991). | Zbl 0738.47047

[00001] [2] W. B. Arveson, Interpolation problems in nest algebras, J. Funct. Anal. 20 (1975), 208-233. | Zbl 0309.46053

[00002] [3] W. B. Arveson, Ten Lectures on Operator Algebras, CBMS Regional Conf. Ser. in Math. 55, Amer. Math. Soc., Providence 1984.

[00003] [4] J. A. Erdos, Operators of finite rank in nest algebras, J. London Math. Soc. 43 (1968), 391-397. | Zbl 0169.17501

[00004] [5] J. A. Erdos, Reflexivity for subspace maps and linear spaces of operators, Proc. London Math. Soc. (3) 52 (1986), 582-600. | Zbl 0609.47053

[00005] [6] J. A. Erdos and S. C. Power, Weakly closed ideals of nest algebras, J. Operator Theory 7 (1982), 219-235. | Zbl 0523.47027

[00006] [7] P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389. | Zbl 0187.05503

[00007] [8] A. Hopenwasser and R. Moore, Finite rank operators in reflexive operator algebras, J. London Math. Soc. (2) 27 (1983), 331-338. | Zbl 0488.47004

[00008] [9] J. Kraus and D. R. Larson, Some applications of a technique for constructing reflexive operator algebras, J. Operator Theory 13 (1985), 227-236. | Zbl 0588.47048

[00009] [10] J. Kraus and D. R. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. (3) 53 (1986), 340-356. | Zbl 0623.47046

[00010] [11] M. S. Lambrou and W. E. Longstaff, Unit ball density and the operator equation AX = YB, J. Operator Theory 25 (1991), 383-397. | Zbl 0806.47015

[00011] [12] E. C. Lance, Cohomology and perturbations of nest algebras, Proc. London Math. Soc. (3) 43 (1981), 334-356. | Zbl 0477.47030

[00012] [13] D. R. Larson and W. R. Wogen, Reflexivity properties of T ⊕ 0, J. Funct. Anal. 92 (1990), 448-467.

[00013] [14] C. Laurie and W. E. Longstaff, A note on rank one operators in reflexive algebras, Proc. Amer. Math. Soc. (2) 89 (1983), 293-297. | Zbl 0539.47027

[00014] [15] W. E. Longstaff, Strongly reflexive lattices, J. London Math. Soc. (2) 11 (1975), 491-498. | Zbl 0313.47002

[00015] [16] W. E. Longstaff, Operators of rank one in reflexive algebras, Canad. J. Math. 28 (1976), 19-23. | Zbl 0317.46052

[00016] [17] M. Papadakis, On hyperreflexivity and rank one density for non-CSL algebras, Studia Math. 98 (1991), 11-17. | Zbl 0755.47030