Metrically convex functions in normed spaces
Kryński, Stanisław
Studia Mathematica, Tome 104 (1993), p. 1-11 / Harvested from The Polish Digital Mathematics Library

Properties of metrically convex functions in normed spaces (of any dimension) are considered. The main result, Theorem 4.2, gives necessary and sufficient conditions for a function to be metrically convex, expressed in terms of the classical convexity theory.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215980
@article{bwmeta1.element.bwnjournal-article-smv105i1p1bwm,
     author = {Stanis\l aw Kry\'nski},
     title = {Metrically convex functions in normed spaces},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {1-11},
     zbl = {0811.52001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p1bwm}
}
Kryński, Stanisław. Metrically convex functions in normed spaces. Studia Mathematica, Tome 104 (1993) pp. 1-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p1bwm/

[00000] [1] T. T. Arkhipova and I. V. Sergenko, The formalization and solution of certain problems of organizing the computing process in data processing systems, Kibernetika 1973 (5), 11-18 (in Russian).

[00001] [2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, Oxford 1953.

[00002] [3] V. G. Boltyanskiĭ and P. S. Soltan, Combinatorial Geometry of Various Classes of Convex Sets, Shtinitsa, Kishinev 1978 (in Russian).

[00003] [4] R. B. Holmes, Geometric Functional Analysis and Its Applications, Springer, New York 1975. | Zbl 0336.46001

[00004] [5] S. L. Kryński, Characterization of metrically convex functions in normed spaces, Ph.D. thesis, Institute of Mathematics, Polish Academy of Sciences, Warszawa 1988 (in Polish). | Zbl 0811.52001

[00005] [6] K. Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), 75-163.

[00006] [7] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton 1970. | Zbl 0193.18401

[00007] [8] V. P. Soltan, Introduction to the Axiomatic Theory of Convexity, Shtinitsa, Kishinev 1984 (in Russian). | Zbl 0559.52001