Properties of metrically convex functions in normed spaces (of any dimension) are considered. The main result, Theorem 4.2, gives necessary and sufficient conditions for a function to be metrically convex, expressed in terms of the classical convexity theory.
@article{bwmeta1.element.bwnjournal-article-smv105i1p1bwm, author = {Stanis\l aw Kry\'nski}, title = {Metrically convex functions in normed spaces}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {1-11}, zbl = {0811.52001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p1bwm} }
Kryński, Stanisław. Metrically convex functions in normed spaces. Studia Mathematica, Tome 104 (1993) pp. 1-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p1bwm/
[00000] [1] T. T. Arkhipova and I. V. Sergenko, The formalization and solution of certain problems of organizing the computing process in data processing systems, Kibernetika 1973 (5), 11-18 (in Russian).
[00001] [2] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford University Press, Oxford 1953.
[00002] [3] V. G. Boltyanskiĭ and P. S. Soltan, Combinatorial Geometry of Various Classes of Convex Sets, Shtinitsa, Kishinev 1978 (in Russian).
[00003] [4] R. B. Holmes, Geometric Functional Analysis and Its Applications, Springer, New York 1975. | Zbl 0336.46001
[00004] [5] S. L. Kryński, Characterization of metrically convex functions in normed spaces, Ph.D. thesis, Institute of Mathematics, Polish Academy of Sciences, Warszawa 1988 (in Polish). | Zbl 0811.52001
[00005] [6] K. Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 100 (1928), 75-163.
[00006] [7] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton 1970. | Zbl 0193.18401
[00007] [8] V. P. Soltan, Introduction to the Axiomatic Theory of Convexity, Shtinitsa, Kishinev 1984 (in Russian). | Zbl 0559.52001