On the eigenvalue asymptotics of certain Schrödinger operators
Cupała, Wiesław
Studia Mathematica, Tome 104 (1993), p. 101-104 / Harvested from The Polish Digital Mathematics Library

Subelliptic estimates on nilpotent Lie groups and the Cwikel-Lieb-Rosenblum inequality are used to estimate the number of eigenvalues for Schrödinger operators with polynomial potentials.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215978
@article{bwmeta1.element.bwnjournal-article-smv105i1p101bwm,
     author = {Wies\l aw Cupa\l a},
     title = {On the eigenvalue asymptotics of certain Schr\"odinger operators},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {101-104},
     zbl = {0811.35024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p101bwm}
}
Cupała, Wiesław. On the eigenvalue asymptotics of certain Schrödinger operators. Studia Mathematica, Tome 104 (1993) pp. 101-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p101bwm/

[00000] [1] W. Cupała, On the essential spectrum and eigenvalue asymptotics of certain Schrödinger operators, Studia Math. 96 (1990), 195-202. | Zbl 0716.35058

[00001] [2] Ch. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.

[00002] [3] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | Zbl 0312.35026

[00003] [4] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216. | Zbl 0008.11301

[00004] [5] B. Simon, Functional Integration and Quantum Physics, Academic Press, 1979. | Zbl 0434.28013