Subelliptic estimates on nilpotent Lie groups and the Cwikel-Lieb-Rosenblum inequality are used to estimate the number of eigenvalues for Schrödinger operators with polynomial potentials.
@article{bwmeta1.element.bwnjournal-article-smv105i1p101bwm, author = {Wies\l aw Cupa\l a}, title = {On the eigenvalue asymptotics of certain Schr\"odinger operators}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {101-104}, zbl = {0811.35024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p101bwm} }
Cupała, Wiesław. On the eigenvalue asymptotics of certain Schrödinger operators. Studia Mathematica, Tome 104 (1993) pp. 101-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv105i1p101bwm/
[00000] [1] W. Cupała, On the essential spectrum and eigenvalue asymptotics of certain Schrödinger operators, Studia Math. 96 (1990), 195-202. | Zbl 0716.35058
[00001] [2] Ch. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
[00002] [3] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), 161-207. | Zbl 0312.35026
[00003] [4] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177-216. | Zbl 0008.11301
[00004] [5] B. Simon, Functional Integration and Quantum Physics, Academic Press, 1979. | Zbl 0434.28013