Commutators based on the Calderón reproducing formula
Nowak, Krzysztof
Studia Mathematica, Tome 104 (1993), p. 285-306 / Harvested from The Polish Digital Mathematics Library

We prove the Schatten-Lorentz ideal criteria for commutators of multiplications and projections based on the Calderón reproducing formula and the decomposition theorem for the space of symbols corresponding to commutators in the Schatten ideal.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215977
@article{bwmeta1.element.bwnjournal-article-smv104i3p285bwm,
     author = {Krzysztof Nowak},
     title = {Commutators based on the Calder\'on reproducing formula},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {285-306},
     zbl = {0812.47019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i3p285bwm}
}
Nowak, Krzysztof. Commutators based on the Calderón reproducing formula. Studia Mathematica, Tome 104 (1993) pp. 285-306. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i3p285bwm/

[00000] [A] J. Arazy, Some remarks on interpolation theorems and the boundedness of the triangular projection in unitary matrix spaces, Integral Equations Operator Theory 1 (1978), 453-495. | Zbl 0395.47030

[00001] [AFP] J. Arazy, S. Fisher and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1055. | Zbl 0669.47017

[00002] [Ax] S. Axler, Bergman spaces and their operators, in: Surveys of Some Recent Results in Operator Theory, J. B. Conway and B. B. Morrel (eds.), Pitman Res. Notes in Math. 171, Longman, 1988, 1-50.

[00003] [B] A. F. Beardon, The Geometry of Discrete Groups, Springer, New York 1983. | Zbl 0528.30001

[00004] [BBCZ] D. Békollé, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domains, J. Funct. Anal. 93 (1990), 310-350. | Zbl 0765.32005

[00005] [BL] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin 1976. | Zbl 0344.46071

[00006] [Bu] H. Q. Bui, Harmonic functions, Riesz potentials, and the Lipschitz spaces of Herz, Hiroshima Math. J. 9 (1979), 245-295. | Zbl 0403.31003

[00007] [CR] R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Astérisque 77 (1980), 12-66. | Zbl 0472.46040

[00008] [E] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. | Zbl 0169.46403

[00009] [F] H. G. Feichtinger, Wiener amalgams over Euclidean spaces and some of their applications, in: Proc. Conference on Function Spaces, Edwardsville, Illinois, April 1990, Lecture Notes in Pure and Appl. Math., Marcel Dekker, to appear. | Zbl 0833.46030

[00010] [FG] H. G. Feichtinger and K. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions I, J. Funct. Anal. 86 (1989), 307-340. | Zbl 0691.46011

[00011] [FR] M. Feldman and R. Rochberg, Singular value estimates for commutators and Hankel operators on the unit ball and the Heisenberg group, in: Analysis and Partial Differential Equations, Cora Sadosky (ed.), Marcel Dekker, New York 1990, 121-159.

[00012] [FS] J. J. F. Fournier and J. Stewart, Amalgams of Lp and lq, Bull. Amer. Math. Soc. 13 (1985), 1-21.

[00013] [FJ1] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. | Zbl 0551.46018

[00014] [FJ2] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. | Zbl 0716.46031

[00015] [FJW] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. in Math. 79, Amer. Math. Soc., Providence, R.I., 1991. | Zbl 0757.42006

[00016] [GK] I. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-Self-Adjoint Operators, Transl. Math. Monographs, Amer. Math. Soc., Providence, R.I., 1969.

[00017] [GMP] A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable group representations II: examples, Ann. Inst. Henri Poincaré 45 (1986), 293-309. | Zbl 0601.22001

[00018] [H] S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando, Fla., 1984. | Zbl 0543.58001

[00019] [J] S. Janson, Hankel operators between weighted Bergman spaces, Ark. Mat. 26 (1988), 205-219. | Zbl 0676.47013

[00020] [Lu] D. H. Luecking, Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk, preprint, 1991.

[00021] [Mc] C. A. McCarthy, cp, Israel J. Math. 5 (1967), 249-271.

[00022] [M] Y. Meyer, Ondelettes et Opérateurs I, II, III, Hermann, Paris 1990.

[00023] [N] K. Nowak, Weak type estimate for singular values of commutators on weighted Bergman spaces, Indiana Univ. Math. J., to appear. | Zbl 0777.47023

[00024] [Pe] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Dept. Math., Duke Univ., Durham, N.C., 1976.

[00025] [RT] F. Ricci and M. Taibleson, Boundary values of harmonic functions in mixed norm spaces and their atomic structure, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 1-54. | Zbl 0527.30040

[00026] [R1] R. Rochberg, Toeplitz and Hankel operators, wavelets, NWO sequences, and almost diagonalization of operators, in: Proc. Sympos. Pure Math. 51, W. B. Arveson and R. G. Douglas (eds.), Amer. Math. Soc., 1990, 425-444.

[00027] [R2] R. Rochberg, Decomposition theorems for Bergman spaces and their applications, in: Operators and Function Theory, S. C. Power (ed.), Reidel, Dordrecht 1985, 225-278.

[00028] [RS1] R. Rochberg and S. Semmes, Nearly weakly orthonormal sequences, singular values estimates, and Calderón-Zygmund operators, J. Funct. Anal. 86 (1989), 237-306. | Zbl 0699.47012

[00029] [RS2] R. Rochberg and S. Semmes, End point results for estimates of singular values of integral operators, in: Contributions to Operator Theory and its Applications, Oper. Theory: Adv. Appl. 35, I. Gohberg et al. (eds.), Birkhäuser, Boston 1988, 217-231.

[00030] [Se] S. Semmes, Trace ideal criteria for Hankel operators, and applications to Besov spaces, Integral Equations Operator Theory 7 (1984), 241-281. | Zbl 0541.47023

[00031] [Si] B. Simon, Trace Ideals and Their Applications, Cambridge Univ. Press, London 1979.

[00032] [Str] K. Stroethoff, Compact Hankel operators on the Bergman space, Illinois J. Math. 34 (1990), 159-174. | Zbl 0687.47019

[00033] [T] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, Springer, New York 1985. | Zbl 0574.10029

[00034] [Tr] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel 1983.

[00035] [Z1] K. Zhu, Operator Theory in Function Spaces, Marcel Dekker, New York 1990.

[00036] [Z2] K. Zhu, VMO, ESV, and Toeplitz operators on the Bergman space, Trans. Amer. Math. Soc. 302 (1987), 617-646.