We prove that the Cantor ternary set E satisfies the classical Markov inequality (see [Ma]): for each polynomial p of degree at most n (n = 0, 1, 2,...) (M) for x ∈ E, where M and m are positive constants depending only on E.
@article{bwmeta1.element.bwnjournal-article-smv104i3p259bwm, author = {Leokadia Bia\l as and Alexander Volberg}, title = {Markov's property of the Cantor ternary set}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {259-268}, zbl = {0814.41014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i3p259bwm} }
Białas, Leokadia; Volberg, Alexander. Markov's property of the Cantor ternary set. Studia Mathematica, Tome 104 (1993) pp. 259-268. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i3p259bwm/
[00000] [Fe] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
[00001] [H-K] W. K. Hayman and P. B. Kennedy, Subharmonic Functions, Vol. I, Academic Press, 1976. | Zbl 0419.31001
[00002] [La] N. S. Landkof, Foundations of Modern Potential Theory, Springer, 1972. | Zbl 0253.31001
[00003] [Lj1] F. Leja, Sur les suites de polynômes, les ensembles fermés et la fonction de Green, Ann. Soc. Polon. Math. 12 (1933), 57-71. | Zbl 61.0356.08
[00004] [Lj2] F. Leja, Theory of Analytic Functions, PWN, Warszawa 1957 (in Polish).
[00005] [M-V] N. Makarov and A. Volberg, On the harmonic measure of discontinuous fractals, LOMI preprint E-6-86, Leningrad 1986.
[00006] [Ma] A. A. Markov, On a problem posed by D. I. Mendeleev, Izv. Akad. Nauk St-Petersbourg 62 (1889), 1-24 (in Russian).
[00007] [Pa-Pl 1] W. Pawłucki and W. Pleśniak, Markov’s inequality and functions on sets with polynomial cusps, Math. Ann. 275 (3) (1986), 467-480. | Zbl 0579.32020
[00008] [Pa-Pl 2] W. Pawłucki and W. Pleśniak, Extension of functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. | Zbl 0778.26010
[00009] [Pl 1] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. 147 (1977).
[00010] [Pl 2] W. Pleśniak, A Cantor regular set which does not have Markov's property, Ann. Polon. Math. 51 (1990), 269-274. | Zbl 0739.30008
[00011] [Pl 3] W. Pleśniak, Compact subsets of preserving Markov’s inequality, Mat. Vesnik 40 (1988), 295-300. | Zbl 0702.32007
[00012] [Pl 4] W. Pleśniak, Markov’s inequality and the existence of an extension operator for functions, J. Approx. Theory 61 (1990), 106-117.
[00013] [R-S] Q. I. Rahman and G. Schmeisser, Les inégalités de Markoff et de Bernstein, Les Presses de l'Université de Montréal, 1983.
[00014] [Si 1] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962), 322-357. | Zbl 0111.08102
[00015] [Si 2] J. Siciak, Degree of convergence of some sequences in the conformal mapping theory, Colloq. Math. 16 (1967), 49-59.
[00016] [Si 3] J. Siciak, An example of a Cantor set preserving Markov's inequality, manuscript, Jagiellonian University, Kraków 1987.
[00017] [Ts] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo 1959. | Zbl 0087.28401