Let be a symmetric α-stable semigroup of probability measures on a homogeneous group N, where 0 < α < 2. Assume that are absolutely continuous with respect to Haar measure and denote by the corresponding densities. We show that the estimate , x≠0, holds true with some integrable function Ω on the unit sphere Σ if and only if the density of the Lévy measure of the semigroup belongs locally to the Zygmund class LlogL(N╲e). The problem turns out to be related to the properties of the maximal function which, as is proved here, is of weak type (1,1).
@article{bwmeta1.element.bwnjournal-article-smv104i3p243bwm, author = {Pawe\l\ G\l owacki and Waldemar Hebisch}, title = {Pointwise estimates for densities of stable semigroups of measures}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {243-258}, zbl = {0812.43005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i3p243bwm} }
Głowacki, Paweł; Hebisch, Waldemar. Pointwise estimates for densities of stable semigroups of measures. Studia Mathematica, Tome 104 (1993) pp. 243-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i3p243bwm/
[00000] [1] A. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353. | Zbl 0185.21806
[00001] [2] R. R. Coifman et G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin 1971. | Zbl 0224.43006
[00002] [3] R. R. Coifman et G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence 1977. | Zbl 0371.43009
[00003] [4] M. Duflo, Représentations de semi-groupes de mesures sur un groupe localement compact, Ann. Inst. Fourier (Grenoble) 28 (3) (1978), 225-249. | Zbl 0368.22006
[00004] [5] J. Dziubański, Asymptotic behaviour of densities of stable semigroups of measures, Probab. Theory Related Fields 87 (1991), 459-467. | Zbl 0695.60013
[00005] [6] W. Emerson, The pointwise ergodic theorem for amenable groups, Amer. J. Math. 96 (1974), 472-487. | Zbl 0296.22009
[00006] [7] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton 1982. | Zbl 0508.42025
[00007] [8] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582. | Zbl 0595.43006
[00008] [9] P. Głowacki, Lipschitz continuity of densities of stable semigroups of measures, Colloq. Math., to appear. | Zbl 0837.43009
[00009] [10] P. Głowacki and A. Hulanicki, A semi-group of probability measures with non-smooth differentiable densities on a Lie group, Colloq. Math. 51 (1987), 131-139. | Zbl 0629.43001
[00010] [11] M. de Guzmán, Differentiation of Integrals in , Springer, Berlin 1975.
[00011] [12] W. Hebisch and A. Sikora, A smooth subadditive homogeneous norm on a homogeneous group, Studia Math. 96 (1990), 231-236. | Zbl 0723.22007
[00012] [13] A. Hulanicki, A class of convolution semi-groups of measures on a Lie group, in: Lecture Notes in Math. 882, Springer, Berlin 1980, 82-101. | Zbl 0462.28009
[00013] [14] A. Hulanicki, Subalgebra of associated with laplacian on a Lie group, Colloq. Math. 31 (1974), 259-287. | Zbl 0316.43005
[00014] [15] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin 1966. | Zbl 0148.12601
[00015] [16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin 1983.
[00016] [17] E. M. Stein, Boundary behavior of harmonic functions on symmetric spaces: maximal estimates for Poisson integrals, Invent. Math. 74 (1983), 63-83. | Zbl 0522.43007
[00017] [18] F. Zo, A note on approximation of the identity, Studia Math. 55 (1976), 111-122. | Zbl 0326.44005