Let F be a complemented subspace of a nuclear Fréchet space E. If E and F both have (absolute) bases resp. , then Bessaga conjectured (see [2] and for a more general form, also [8]) that there exists an isomorphism of F into E mapping to where is a scalar sequence, π is a permutation of ℕ and is a subsequence of ℕ. We prove that the conjecture holds if E is unstable, i.e. for some base of decreasing zero-neighborhoods consisting of absolutely convex sets one has ∃s ∀p ∃q ∀r where denotes the nth Kolmogorov diameter.
@article{bwmeta1.element.bwnjournal-article-smv104i3p221bwm, author = {Zefer Nurlu and Jasser Sarsour}, title = {Bessaga's conjecture in unstable K\"othe spaces and products}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {221-228}, zbl = {0812.46004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i3p221bwm} }
Nurlu, Zefer; Sarsour, Jasser. Bessaga's conjecture in unstable Köthe spaces and products. Studia Mathematica, Tome 104 (1993) pp. 221-228. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i3p221bwm/
[00000] [1] H. Ahonen, On nuclear spaces defined by Dragilev functions, Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 38 (1981), 1-57. | Zbl 0483.46009
[00001] [2] C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318. | Zbl 0182.45301
[00002] [3] L. Crone and W. B. Robinson, Every nuclear Fréchet space with a regular basis has the quasi-equivalence property, ibid. 52 (1975), 203-207. | Zbl 0297.46008
[00003] [4] M. M. Dragilev, On special dimensions defined on some classes of Köthe spaces, Math. USSR-Sb. 9 (2) (1968), 213-228.
[00004] [5] M. M. Dragilev, On regular bases in nuclear spaces, Amer. Math. Soc. Transl. (2) 93 (1970), 61-82.
[00005] [6] E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, Berlin 1979. | Zbl 0403.46005
[00006] [7] M. Hall, Jr., Combinatorial Theory, Blaisdell-Waltham, 1967.
[00007] [8] V. P. Kondakov, On a certain generalization of power series spaces, in: Current Problems in Mathematical Analysis, Rostov State Univ., 1978, 92-99 (in Russian).
[00008] [9] V. P. Kondakov, Properties of bases of some Köthe spaces and their subspaces, in: Functional Analysis and its Applications 14, Rostov State Univ., 1980, 58-59 (in Russian).
[00009] [10] V. P. Kondakov, Unconditional bases in certain Köthe spaces, Sibirsk. Mat. Zh. 25 (3) (1984), 109-119 (in Russian). | Zbl 0589.46006
[00010] [11] G. Köthe, Topologische lineare Räume I, Springer, Berlin 1960. | Zbl 0093.11901
[00011] [12] J. Krone, Bases in the range of operators between Köthe spaces, Doğa Tr. J. Math. 10 (1986), 162-166 (special issue). | Zbl 0970.46518
[00012] [13] B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk 16 (4) (1961), 73-132 (in Russian). | Zbl 0104.08601
[00013] [14] B. S. Mityagin, Equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian).
[00014] [15] Z. Nurlu, On pairs of Köthe spaces between which all operators are compact, Math. Nachr. 122 (1985), 272-287. | Zbl 0612.46009
[00015] [16] A. Pietsch, Nuclear Locally Convex Spaces, Springer, Berlin 1972.
[00016] [17] J. Prada, On idempotent operators on Fréchet spaces, Arch. Math. (Basel) 43 (1984), 179-182. | Zbl 0537.46005
[00017] [18] J. Sarsour, Bessaga's conjecture and quasi-equivalence property in unstable Köthe spaces, Ph.D. Thesis, METU, Ankara 1991. | Zbl 0812.46004
[00018] [19] T. Terzioğlu, Unstable Köthe spaces and the functor Ext, Doğa Tr. J. Math. 10 (1986), 227-231 (special issue). | Zbl 0970.46523
[00019] [20] D. Vogt, Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen, Manuscripta Math. 37 (1982), 269-301. | Zbl 0512.46003