We give a spectral characterisation of rank one elements and of the socle of a semisimple Banach algebra.
@article{bwmeta1.element.bwnjournal-article-smv104i3p211bwm, author = {T. Mouton and H. Raubenheimer}, title = {On rank one and finite elements of Banach algebras}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {211-219}, zbl = {0814.46035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i3p211bwm} }
Mouton, T.; Raubenheimer, H. On rank one and finite elements of Banach algebras. Studia Mathematica, Tome 104 (1993) pp. 211-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i3p211bwm/
[00000] [1] B. Aupetit, Propriétés Spectrales des Algèbres de Banach, Springer, Berlin 1979. | Zbl 0409.46054
[00001] [2] B. A. Barnes, G. J. Murphy, M. R. F. Smyth and T. T. West, Riesz and Fredholm Theory in Banach Algebras, Pitman, Boston 1982. | Zbl 0534.46034
[00002] [3] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973. | Zbl 0271.46039
[00003] [4] R. A. Hirschfeld and B. E. Johnson, Spectral characterization of finite-dimensional algebras, Indag. Math. 34 (1972), 19-23. | Zbl 0232.46043
[00004] [5] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261. | Zbl 0589.47003
[00005] [6] J. Puhl, The trace of finite and nuclear elements in Banach algebras, Czechoslovak Math. J. 28 (1978), 656-676. | Zbl 0394.46041
[00006] [7] Z. Słodkowski, On the subharmonicity of the capacity of the spectrum, Proc. Amer. Math. Soc. 81 (1981), 243-249. | Zbl 0407.46046