It is shown that the weak spaces , and are isomorphic as Banach spaces.
@article{bwmeta1.element.bwnjournal-article-smv104i2p151bwm, author = {Denny Leung}, title = {Isomorphism of certain weak $L^{p}$ spaces}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {151-160}, zbl = {0814.46015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p151bwm} }
Leung, Denny. Isomorphism of certain weak $L^{p}$ spaces. Studia Mathematica, Tome 104 (1993) pp. 151-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p151bwm/
[00000] [1] N. L. Carothers and S. J. Dilworth, Subspaces of , Proc. Amer. Math. Soc. 104 (1988), 537-545.
[00001] [2] D. H. Leung, has a complemented subspace isomorphic to , Rocky Mountain J. Math. 22 (1992), 943-952.
[00002] [3] D. H. Leung, Embedding into complementably, Bull. London Math. Soc. 23 (1991), 583-586.
[00003] [4] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin 1977. | Zbl 0362.46013
[00004] [5] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces, Springer, Berlin 1979. | Zbl 0403.46022