Interpolation of operators when the extreme spaces are L
Bastero, Jesús ; Ruiz, Francisco
Studia Mathematica, Tome 104 (1993), p. 133-150 / Harvested from The Polish Digital Mathematics Library

Under some assumptions on the pair (A0,B0), we study equivalence between interpolation properties of linear operators and monotonicity conditions for a pair (Y,Z) of rearrangement invariant quasi-Banach spaces when the extreme spaces of the interpolation are L. Weak and restricted weak intermediate spaces fall within our context. Applications to classical Lorentz and Lorentz-Orlicz spaces are given.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215965
@article{bwmeta1.element.bwnjournal-article-smv104i2p133bwm,
     author = {Jes\'us Bastero and Francisco Ruiz},
     title = {Interpolation of operators when the extreme spaces are $L^{$\infty$}$
            },
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {133-150},
     zbl = {0814.46063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p133bwm}
}
Bastero, Jesús; Ruiz, Francisco. Interpolation of operators when the extreme spaces are $L^{∞}$
            . Studia Mathematica, Tome 104 (1993) pp. 133-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p133bwm/

[00000] [1] M. A. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (2) (1990), 727-735. | Zbl 0716.42016

[00001] [2] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, 1988. | Zbl 0647.46057

[00002] [3] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, 1976.

[00003] [4] D. W. Boyd, Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245-1254. | Zbl 0184.34802

[00004] [5] A. P. Calderón, Spaces between L1 and L and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299.

[00005] [6] M. Cwikel, K-divisibility of the K-functional and Calderón couples, Ark. Mat. 22 (1) (1984), 39-62. | Zbl 0535.46049

[00006] [7] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam 1985.

[00007] [8] N. J. Kalton, Endomorphisms of symmetric function spaces, Indiana Univ. Math. J. 34 (2) (1985), 225-247. | Zbl 0572.46029

[00008] [9] A. Kamińska, Some remarks on Orlicz-Lorentz spaces, Math. Nachr. 147 (1990), 29-38. | Zbl 0742.46013

[00009] [10] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, 1979. | Zbl 0403.46022

[00010] [11] G. Lorentz and T. Shimogaki, Interpolation theorems for the pairs of spaces (Lp,L) and (L1,Lq), Trans. Amer. Math. Soc. 139 (1971), 207-221. | Zbl 0244.46044

[00011] [12] L. Maligranda, A generalization of the Shimogaki theorem, Studia Math. 71 (1981), 69-83. | Zbl 0496.46019

[00012] [13] L. Maligranda, Indices and interpolation, Dissertationes Math. 234 (1985).

[00013] [14] M. Mastyło, Interpolation of linear operators in Calderón-Lozanovskii spaces, Comment. Math. 26 (2) (1986), 247-256. | Zbl 0636.46064

[00014] [15] S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 (1992), 161-189. | Zbl 0814.46023

[00015] [16] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. | Zbl 0236.26016

[00016] [17] Y. Raynaud, On Lorentz-Sharpley spaces, in: Proc. Workshop "Interpolation Spaces and Related Topics", Haifa, June 1990, IMCP, Vol. 5 (1992), 207-228.

[00017] [18] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), 145-158. | Zbl 0705.42014

[00018] [19] R. Sharpley, Spaces Λα(X) and interpolation, J. Funct. Anal. 11 (1972), 479-513. | Zbl 0245.46043

[00019] [20] T. Shimogaki, An interpolation theorem on Banach function spaces, Studia Math. 31 (1968), 233-240. | Zbl 0172.40101

[00020] [21] A. Torchinsky, Interpolation of operators and Orlicz classes, ibid. 59 (1976), 177-207. | Zbl 0348.46027

[00021] [22] M. Zippin, Interpolation of operators of weak type between rearrangement invariant function spaces, J. Funct. Anal. 7 (1971), 267-284. | Zbl 0224.46038