It is shown that if (S,∑,m) is an atomless finite measure space and X is a Banach space without the Radon-Nikodym property, then the quotient space cabv(∑,m;X)/L¹(m;X) is nonseparable.
@article{bwmeta1.element.bwnjournal-article-smv104i2p125bwm, author = {Lech Drewnowski}, title = {Nonseparability of the quotient space cabv($\sum$,m;X)/L$^1$(m;X) for Banach spaces X without the Radon-Nikodym property}, journal = {Studia Mathematica}, volume = {104}, year = {1993}, pages = {125-132}, zbl = {0810.46040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p125bwm} }
Drewnowski, Lech. Nonseparability of the quotient space cabv(∑,m;X)/L¹(m;X) for Banach spaces X without the Radon-Nikodym property. Studia Mathematica, Tome 104 (1993) pp. 125-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p125bwm/
[00000] [1] J. Bourgain, Dunford-Pettis operators on and the Radon-Nikodym property, Israel J. Math. 37 (1980), 34-47. | Zbl 0457.46017
[00001] [2] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, Berlin 1983. | Zbl 0512.46017
[00002] [3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
[00003] [4] L. Drewnowski, Another note on copies of and in ca(Σ, X), and the equality ca(Σ, X) = cca(Σ, X), preprint, 1990.
[00004] [5] L. Drewnowski and G. Emmanuele, The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of , this volume, 111-123. | Zbl 0811.46038
[00005] [6] Z. Lipecki, Conditional and simultaneous extensions of group-valued quasi-measures, Glas. Mat. 19 (1984), 49-58. | Zbl 0598.28018
[00006] [7] R. D. Mauldin, Some effects of set-theoretical assumptions in measure theory, Adv. in Math. 27 (1978), 45-62. | Zbl 0393.28001
[00007] [8] A. Michalak, in preparation.