Nonseparability of the quotient space cabv(∑,m;X)/L¹(m;X) for Banach spaces X without the Radon-Nikodym property
Drewnowski, Lech
Studia Mathematica, Tome 104 (1993), p. 125-132 / Harvested from The Polish Digital Mathematics Library

It is shown that if (S,∑,m) is an atomless finite measure space and X is a Banach space without the Radon-Nikodym property, then the quotient space cabv(∑,m;X)/L¹(m;X) is nonseparable.

Publié le : 1993-01-01
EUDML-ID : urn:eudml:doc:215964
@article{bwmeta1.element.bwnjournal-article-smv104i2p125bwm,
     author = {Lech Drewnowski},
     title = {Nonseparability of the quotient space cabv($\sum$,m;X)/L$^1$(m;X) for Banach spaces X without the Radon-Nikodym property},
     journal = {Studia Mathematica},
     volume = {104},
     year = {1993},
     pages = {125-132},
     zbl = {0810.46040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p125bwm}
}
Drewnowski, Lech. Nonseparability of the quotient space cabv(∑,m;X)/L¹(m;X) for Banach spaces X without the Radon-Nikodym property. Studia Mathematica, Tome 104 (1993) pp. 125-132. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv104i2p125bwm/

[00000] [1] J. Bourgain, Dunford-Pettis operators on L1 and the Radon-Nikodym property, Israel J. Math. 37 (1980), 34-47. | Zbl 0457.46017

[00001] [2] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, Berlin 1983. | Zbl 0512.46017

[00002] [3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.

[00003] [4] L. Drewnowski, Another note on copies of l and c0 in ca(Σ, X), and the equality ca(Σ, X) = cca(Σ, X), preprint, 1990.

[00004] [5] L. Drewnowski and G. Emmanuele, The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of c0, this volume, 111-123. | Zbl 0811.46038

[00005] [6] Z. Lipecki, Conditional and simultaneous extensions of group-valued quasi-measures, Glas. Mat. 19 (1984), 49-58. | Zbl 0598.28018

[00006] [7] R. D. Mauldin, Some effects of set-theoretical assumptions in measure theory, Adv. in Math. 27 (1978), 45-62. | Zbl 0393.28001

[00007] [8] A. Michalak, in preparation.